UDC 3937

On Multidimensional Cosmology with Anisotropic Fluid:
Asymptotical Acceleration and Zero Variation of ¢

A. G. Pakhomov

Institute of Gravitation and Cosmology
Peoples’ Friendship University of Russia
6, Miklukho-Maklaya str., Moscow, Russia, 117198

A multidimensional cosmological model describing the dynamics of n+ 1 flat factor—spaces
M, in the presence of a one-component anisotropic fluid is offered. The pressures in all spaces
are proportional to the density: p; = w;p, i = 0,...,n. Solutions with accelerated expansion
of our 3-space My and zero variation of the grav1tat10nal constant G are studied. These
solutions exist for two branches of the parameter wg: The first branch describes the matter
with wo > 1, the second one may contain phantom matter with wo < —1. It is shown that
these solutions are special case of more general solutions with accelerated expansion of our
3-space My and asymptotically zero variation of the gravitational constant G.

The model of an ideal many-dimensional substance with three isotropic dimensions of our
space, additional dimensions and time is considered. Spacelike dimensions are presented
by the power metric depending on parameters of an equation of state. It is shown, that
association of dynamic parameters of our three-dimensional space on additional dimensions
in the open view may be expressed through coefficient of anisotropy of additional dimensions.
Dependence from parameter of an equation of state of our isotropic 3-dimensional space to
coefficient of anisotropy of the additional dimensions, requiring the accelerated expansion of
the Universe is received in an explicit aspect. The received association is presented pictorially.
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expansion, variation of G.

1. Introduction

This paper deals with a possible temporal variation of gravitational constant G.
This problem arose due to papers of Milne (1935) and Dirac (1937). In Russia, these
ideas were developed in the 60s and 70s by K.P. Staniukovich [1,2], who was the first
to consider simultaneous variations of several fundamental constants.

The first calculations based on general relativity with a perfect fluid and a confor-
mal scalar field [3] gave G'/G at the level of 10~'* — 10~'3 per year. The calculations
in string-like [4] and multidimensional models with perfect fluid [5] led to the level
1072, those based on a general class of scalar-tensor theories [6] and simple multidi-
mensional model with branes [7,8] led for the present values of cosmological param-
eters 10713 — 10~!* and 10~'3 per year, respectively. Similar estimations were made
by Miyazaki within Machian theories [9] giving for G/G the estimate 10~'3 per year
and by Fujii — on the level 1071* — 10715 per year [10]. Analysis of one more multi-
dimensional model with two curvatures in different factor spaces gave an estimate on
the level 10712 .

Here we continue our studies (see [11]) on variation of G in multidimensional cos-
mological model with 1-component “perfect-fluid” matter. We show that the class of
solutions from [11] may be enlarged by more general solutions with accelerated expan-
sion of 3-dimensional space My and asymptoticaly zero variation of the gravitational
constant G.
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2. The Model

We consider a cosmological model describing the dynamics of n flat spaces in the
presence of a 1-component “perfect-fluid” matter [12]. The metric of the model

g = —exp[2y(t)]dt ® dt + Z exp[2z°(t)]g’ (1)
i=0
is defined on the manifold

M =R x Myx My X...x My, (2)

where M; with the metric ¢° is a flat space of dimension d;, i = 0,...,n; n > 2. The
multidimensional Hilbert-Einstein equations have the form

1
R% - 5(5%]% = KJQTJZ\\%,

where k2 is the gravitational constant, and the energy-momentum tensor is adopted
as (TM) = diag (—p, p()(SZ(L)O, e pn(s,:i"), describing, in general, an anisotropic fluid.
We put pressures of this “perfect” fluid in all spaces to be proportional to the
density,
pi(t) = (1 —u;/di)p(t), (3)
where u; = const, ¢ =0,...,n. We also put p > 0.
We impose also the following restriction on the vector v = (u;) € R™:
(u, u) # 0. (4)
Here, the bilinear form (.,.) : R™ x R™ — R is defined by the relation
(u,v) = Gu0;, (5)
u,v € R"! where
- 5t 1
G = —+ ——. 6
d; + 2—-D (6)

are components of the matrix inverse to the matrix of the minisuperspace metric [13,14]
Gi]‘ = dléz] — dldj (7)

In (6), D=1+ Y. ,d; is the total dimension of the manifold M from (2).
The inequality (4) reads

) =3 (“532 -5 (i ui>2 #0. (8)

=0 =0

3. Solutions with Power-Law Scale Factors

Here, we consider a special family of “power-law” solutions from [12,15] with the
metric written in the synchronous time parametrization

g=—dt,®dt,+ Y _ai(ts)g" (9)

=0
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Here t is cosmological (synchronous) time variable.
A special class of solutions with a power-law behaviour of the scale factors take
place for

(™ —u,u) #0. (10)

Here and below the vector
corresponds to the A-term fluid with p; = —p.
In this case, the solutions are determined by the metric (9) with the scale factors

a; = a;(ts) = At?, (12)
and the density
—2(u, u)
2 9
P (u) — q, u)2t2” (13)
Here , .
V= 2ut )/ (u® — u,u), (14)
where u! = G¥u; and A; are positive constants, i = 0,...,n.

The model under consideration was integrated in [12] for (u,u) < 0. The solutions
from [12] were generalized in [15] to the case when a massless minimally coupled scalar

field was added.

4. Acceleration and Variation of G

In this section, the metric ¢° is assumed to be 3-dimensional flat metric, i.e.
do = 3. The subspace (Mo, g°) describes “our” 3-dimensional space and (M;,g") in-
ternal factor-spaces. One may consider the special case d; = 1,7 =1,...,n, as it was
done in [11]. See also [16].

We are interested in solutions with accelerated expansion of our space and small
enough variations of the gravitational constant obeying the present experimental con-
straints, see [17]:

|G/(GH)|(ts0) < 0.001, (15)

where )
H=2 (16)

ap

is the Hubble parameter. We suppose that the internal spaces are compact. Hence
our 4-dimensional constant is (see [5])

G = const - H(a;di). (17)
i=1

We will use the following explicit formulae for the contravariant components:
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4.1. Power-Law Expansion with Acceleration

For solutions with power-law expansion, an accelerated expansion of our space
takes place for

V0> 1. (19)
For D = 4, when internal spaces are absent, we get
v’ =2/(6 — o), (20)
1
<u(A) - u, u> = 6(“0 - 6)“0 7é 07 (21)
which implies uo # 0 and uy # 6 (here (u,u), = —2ud < 0). The condition 1° > 1

is equivalent to 4 < ug < 6, or, equivalently, —p < p < —p/3, which agrees with the
well-known result for D = 4. (We note that special 5-dimensional power-law solutions
(e.g., with acceleration) were considered in [18]).

For power-law solutions we get

G’ Z/idi . 0
j=1 ap v
Z = H=-"2=2 22
= o ol (22)
and hence
: 1 ¢ i
G/(GH) =—— Y vidi =6 (23)

The constant parameter § describes variation of the gravitational constant and,
according to (15),
|0] < 0.001. (24)

It follows from the definition (14) that
1«
§=—— > u'd;. (25)

or, in terms of covariant components

(D —4yuo—2 3 u,
S = — =1 (26)

%(5 — D)ug + ;ul

4.1.1. The Case of Constant G

‘ Consider the most important case § = 0, i.e., when the variation of G is absent:
G=0.
We note that according to arguments of [19], § < 10~*. This constraint just follows
from the identity

G/G = a/a, (27)
where « is the fine structure constant.

Isotropic case. Let us consider the isotropic case when the pressures coincide in
all internal spaces. This takes place when

w; =vd;, 1=1,...,n. (28)
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For pressures in internal spaces we get from (3)
pi=1—-v)p, i=1,...,n. (29)

Then we get from (8) and (18)

1 1
(uu) = 5= |—3(d = Do + 2dugv — 2dv* |, (30)
1 1
(W™ — ) = 5D [2ug + 2dv + 5(d — 1)ug — 2dugv + 2dv?]. (31)

Here we denote d = D — 4.
For § = 0, we get in the isotropic case

v = U0/2, (32)
or, in terms of pressures,
pi=Bpo—p)/2, i=1,...,n. (33)

Substituting (32) into (30) and (31) we get (u,u) = —u3 /6, (u™ —u,u) = ug(ug —
6)/6.

Thus, we obtain the same relations as in D = 4 case (see the remark above). For
our solution, we should put ug # 0 and ug # 6.

Using (28) and (32) we get u® = —u/6 and u’ = 0 for i > 0, hence v; = 0 for
1 =1,...,n, i.e., all internal spaces are static.

The metric (9) reads in our case

g=—dt, @ dt, + A22" g0 + > Azg, (34)

=1

where A; are positive constants, and

V0 =2/(6 — up). (35)
We see that the power 1V is the same as in case D = 4. For the density we get from
(13)
12
2
= ) 36
FP = e =6 (36)

Thus the equations of state (3), with relations (28) and (32) imposed, lead to the
solution (34)—(36) with flat 3-metric and n static internal flat spaces. For

4 <ug<6 (37)

or, equivalently, —p < pg < —p/3, we get an accelerated expansion of “our” 3-
dimensional flat space.

Anisotropic case. Consider the anisotropic (w.r.t. internal spaces) case with
0 = 0, or, equivalently (see (26)),
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This implies

1
<u(A) —u,u)y = éuo(uo —6) — A, (39)
1
(u,0) = = 5 + A, (40)
where
n u2 1 n 2
A=) - d ui) 20, d=D-4. (41)
i—1 i—1

The inequality in (41) can be readily proved using the well-known Cauchy-Schwarz

inequality: ) ) ) i
(Z bg) (Z ) > (Z b) . (42)

i=1 i=1

A = 0 only in the isotropic case (28). In the anisotropic case we get A > 0. Thus A
is anisotropy parameter.

In what follows we will use the relation

() ) = 2 (o — (0 — ), (13)

where uoi = 3£ v/9+ 6A are roots of the quadratic polynomial (39) obeying u, <0,
ug > 6 for A > 0. It follows from (38) that u® = —ug/6 and hence
0 QU()

YT Tuo(ug — 6) — 6A 9

(here ug # ud).

The accelerated expansion of our space takes place when v > 1, or, equivalently,
when either
(A) o € (ug,,ug), or (B) wug € (ug,,ug), (45)

where u(jf* =2+ 44 6A. In terms of the parameter wy,

Po = wop, wo=1—1u9/3, (46)

=/1+ A<w0< +q/1+ A_wo*, (47)
= /14 A<w0<———\/ = . (48)

The range wy when the accelerated expansion (A, B) is realized is shown in Fig-
ure 1.

these two branches read:

The first branch (A) describes a matter with wy > 1 and p < 0 (it follows from
(13) and (u,u) > 0.

The second branch (B) corresponds to matter with a broken weak energy condition
(since wo < —31) and p > 0 (since (u,u) < 0). This matter is phantom (i.e., wo < —1)
when A > 2
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Accelerated expansion of the Universe

Figure 1. Dependence from parameter of an equation of state of our isotropic
3-dimensional space wy to coefficient of anisotropy of the additional
dimensions A. Two branches of ranges of the solutions (A, B), realizing
accelerated expansion are shown

5. Solutions with Acceleration and Asymptotically
Constant G

It may be shown that power-law solutions from section 2 obeying restrictions (4),
(10), (u,u) < 0 and
(u, u™) /(u,u) > 1 (49)

are attractor solutions for more general class of solutions from [12] (for solutions with
a massless scalar field see [15]).
So, in the case when restrictions (4), (10) and (49) take place we get

a; = ai(ts) ~ Aﬂfgi, (50)

and
—2(u,u)

2
mp (u) — y, u)22’

(51)
as ts — +o00, instead of (12) and (13).
When restriction on u; parameters (38) is valid we get from (17)

G ~ Gy = const, (52)

as tg — +o0.

Moreover, it may be shown that for any solution obeying restrictions (4), (10) and
(49) there exists T > 0 such that for ¢, € (T,4+00) we get an accelerated expansion
of our 3-space My and small enough variation of the effective gravitational constant
G(ts), obeying the observational restriction (15).

6. Conclusions

We have considered multidimensional cosmological models describing the dynamics
of n+1 flat factor spaces M; in the presence of a one-component anisotropic fluid with
pressures in all spaces proportional to the density: p; = w;p, ¢ = 0,...,n. Solutions
with accelerated expansion of our 3-dimensional space My and zero variation of the
gravitational constant G were considered. These solutions exist for two branches of
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the parameter wg: (A) and (B). Branch (A) describes superstiff matter with wy > 1
while branch (B) may contain phantom matter with wy < —1.

We have shown that these solutions are special case of more general solutions
with accelerated expansion of our 3-space M, and asymptotically zero variation of the
gravitational constant G, i.e. G(ts) — const for t; — +oo (ts is a synchronous time
variable).
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YIK 3937
MuoromepHasi KOCMOJIOTUYeCKasi MO/IeJIb C AaHU30TPOMHOMN
KUJIKOCTBHIO: aCCUMIITOTUYECKOEe YCKOPEeHUue U HyJieBas
Bapuanus G

A.T. IlaxomosB

YVuebro-rHayuHvlll UHCTRUMYM 2Pa8UMAUUY U KOCMOAOLUL,
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Murxayxo-Maxaas, 0.6, Mocksa, Poccus, 117198

IIpentaraercss MHOromMepHasi KOCMOJIOTHYECKAsl MOJIEJb, OIUCHIBAIONIAs AUHAMUKY 1 + 1
IUTIOCKHUX TPOCTPAHCTB M; B IPUCYTCTBUU OJTHOKOMITOHEHTHON aHU3TPONHON >KujakocTu. las-
JIeHHuEe BO BCeX IMPOCTPAHCTBAX IPOIMOPIMOHATIBHBI IJIOTHOCTH: p; = wip, ¢ = 0,...,n. U3y-
YalOTCS PEIIEHNs C YCKOPEHHBIM DACIIMPEHHEM HaIlero TPEXMEPHOIo mpocTpaHcTBa Mo u
HYJIEBOIl Bapualyeil rpaBUTAIIMOHHON NOCTOsIHHOW (G. DTU peIllleHns] CYIIeCTBYIOT s IBYX
BeTBell mapameTpa wo: MepBasl BETBb OIMCHIBAET MATEPHIO C wo > 1, BTOpasg MOXKET COJEep-
KaTb GPaHTOMHYIO MaTepuio ¢ wy < —1. [TokazaHo, 9TO 9T pEIeHNsT SBIAIOTCS TaCTHBIM
ciaydaeM OoJiee OOIMX PEIIEHUUN C YCKOPEHHBIM PACIIPEHHEM HAIIero TPEXMEPHOTO IIPO-
crpaucTBa Mo ¥ aCUMOTOTHYECKN HYJIEBOU BapHallyeil TpaBUTAIMOHHON MOCTOSTHHON G.

Paccmorpena Mozens nmeaabHO MHOTOMEDPHOM CYOCTAHIIMM C TPEeMsI M30TPOITHBIMY M3Me-
PEHUSMH HAIEro IIPOCTPAHCTBA, JOIOJIHUTEJILHBIMIA U3MEPEHUs MU U BpeMeHeM. [Ipocrpan-
CTBEHHBIC U3MEPEHUA IIPEICTABICHBI CTEICHHON METPUKOU, 3aBUCAIIECHA OT IIapaMeTpPOB ypaB-
HEHUsI COCTOsIHUsI. VI3yyarorcst miaockue hakToOp-IIPOCTPAHCTBA C OJHOKOMIIOHEHTHOM U1ea/Ib-
Ho#t cyOcTannueit. [losrydena B sBHOM BHjie 3aBUCHUMOCTD ITapaMeTpa YPAaBHEHUS COCTOSHUS
HAaIIero U30TPOITHOIO 3-MEPHOTO IPOCTPAHCTBA OT KO3 (PUIMEHTa aHU30TPOIUHU JIOITOJTHU-
TEJIBbHBIX U3MEPEHuil, Tpebyolas YCKOpeHHOro paciupenns Bceesennoit. [Toxyuennas 3aBu-
CHMOCTbD IIPeJICTaB/IeHa IpadUIeCKH.

KirodeBbie cjioBa: MHOTOMEpPHAsI IPaBUTAIMsI, AaHU30TPOITHAST YKUJIKOCTh, YCKOPEHHOE
paciupenue, Bapuanus G.





