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A new analytical and numerical solution of the electrodynamic waveguide problem
for leaky modes of a planar dielectric symmetric waveguide is proposed. The con-
ditions of leaky modes, corresponding to the Gamow-Siegert model, were used as
asymptotic boundary conditions. The resulting initial-boundary problem allows the
separation of variables. The emerging problem of the eigen-modes of open three-layer
waveguides is formulated as the Sturm-Liouville problem with the corresponding
boundary and asymptotic conditions. In the case of guided and radiation modes, the
Sturm-Liouville problem is self-adjoint and the corresponding eigenvalues are real
quantities for dielectric media. The search for eigenvalues and eigenfunctions corre-
sponding to the leaky modes involves a number of difficulties: the problem for leaky
modes is not self-adjoint, so the eigenvalues are complex quantities. The problem of
finding eigenvalues and eigenfunctions is associated with finding the complex roots
of the nonlinear dispersion equation. To solve this problem, we used the method of
minimizing the zero order. An analysis of the calculated distributions of the electric
field strength of the first three leaky modes is given, showing the possibilities and
advantages of our approach to the study of leaky modes.
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1. Introduction

In the books by Marcuse [1], [2], Adams [3], Snyder and Love [4], Tamir [5],
and other authors the terms “leaky rays” and “leaky modes” appear when
discussing the propagation of polarized light in fiber optical waveguides with
the refractive index of the core smaller than that of the cladding, and in
planar waveguides with plates of material optically denser than the waveguide
layer itself. In this case, Marcuse writes that the outflow of light from such
a waveguide is akin to tunneling through a potential barrier in quantum
mechanics. The “leaky light”, in contrast to the “emitted light”, propagates
for quite a long time along the axis of the optical fiber. Similarly, in a planar
waveguide, the resulting electromagnetic radiation propagates for some time
at some distance along the waveguide, in contrast to the emitted light.

At the initial stage of the study of “leaky” modes, T. Tamir et al. [6]–
[12], A.W. Snyder et al. [13]–[18], as well as other research teams [19]–[25],
investigated the dispersion equations of optical waveguides written in terms
of transition matrices from the point of view of choosing one (two) roots of an
analytical function. The studies were executed using the theory of residues in
Cauchy integrals.

In the papers by V. Shevchenko [24], [25] the behavior of guided modes
during the transition of their wave numbers beyond critical values was ana-
lyzed, their transformation into leaky modes was shown, and the choice of
quadrants to which the wave numbers should shift when passing through crit-
ical values was justified. At frequencies below critical, the reflection from the
waveguide walls ceases to be complete, so that the waveguide modes continue
to propagate experiencing incomplete internal reflection, because of which
some radiation from the waveguide occurs. Such (improper) waveguide waves
with radiative damping are called leaky waves.

Open waveguides as radiating systems were first investigated by Hansen [19],
who proposed an antenna structure implemented using leaky waves. However,
there was no understanding of the physical mechanism of the resulting waves.
After all, the leaky waveguide mode is characterized by a complex longitudinal
wave number with constant attenuation due to radiation losses.

In this case, the longitudinal attenuation leads to an exponential increase
in the wave amplitude in the transverse direction. This fact violates the usual
radiation condition for guided modes, described by the solutions of self-adjoint
problems for the Helmholtz equation. The behavior of the resulting waves
that seems non-physical was clarified by Marcuvitz [23] and Oliner [6]–[9].

In the papers by Oliner et al. [6]–[12], a detailed study of the complex roots
of the dispersion equation that do not correspond to the guided modes is
given. The study begins with the assumption that exponentially damped
waves correspond to such roots, the experimental observation of which was
earlier reported in Refs. [20]–[22]. First, using ray technique, and then with the
help of mode analysis, the authors analyzed the wave solutions corresponding
to four different roots of the fourth-power dispersion equation. Two of these
roots correspond to solutions that exponentially decrease in the direction
of propagation and are located symmetrically with respect to the axes of
coordinates and the origin of coordinates. The rest two roots are rejected.
Many publications of that time have been devoted to the analysis of the
relative position of the variety of roots [6]–[18].
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In the first decades of the study of leaky waves, the method of steepest
descent was used as the most common method for their numerical search.
In this case, the trajectory of the fastest descent comes close to the leakage
poles, they begin to make a significant contribution or even dominate in the
general directional pattern of an open waveguide. The field distribution of the
resulting leaky wave increases in the transverse direction. However, the field
amplitude remains finite in a wedge-like region of space that allows leakage.

As shown by Marcuvitz [23], these complex poles can correspond to leaky
modes. Although they do not make a direct contribution to the correct
spectral solution and can therefore be characterized by non-physical growth
towards infinity, they can nevertheless accurately describe the radiation field in
limited spatial domains. In Ref. [26], e.g., it is noted that in most publications
on leaky modes there are no plots of fields of various types for leaky modes
calculated numerically (see, e.g., [4], [5], [27]–[35]). In this case, the authors
of some publications (e.g., [34]) propose to replace the leaky modes with
radiative ones in limited domains. Our studies have shown that this can
lead, firstly, to a large error in the calculation of losses, and secondly, to
an inaccurate calculation of the field profiles of leaky modes at distances
exceeding several wavelengths (⩾ 2) of the electromagnetic radiation used.
The replacement of one wave with another sometimes used requires serious
analysis in each specific case. As a consequence, there is an urgent need to
develop new algorithms for calculating the fields of both radiative and leaky
modes, surpassing the standard methods, e.g., the FDTD method, in count
rate and not inferior to them in accuracy.
In quantum physics, such solutions of the stationary Schrödinger equation

are called Gamow resonances [36], [37] or Siegert quasi-states [38]. In recent
decades, some researchers (see [39], [40]) solve boundary-value problems for
the Helmholtz equations with the asymptotic conditions of Siegert leaky waves,
obtaining numerical results interpreted by them as leaky waves. We propose
to obtain (using a numerical method) the solutions of boundary problems
for wave equations with asymptotic conditions of Siegert leaky waves. The
numerical solutions obtained using this approach coincide with the solutions
of Refs. [27]–[29], [33], [35], [41], but additionally allow description of the
phase fronts of leaky waves and “angular outflow cones”.
In our opinion, a more rigorous justification of the model of leaky waves of

open waveguide systems can be obtained by starting calculations not from
the Helmholtz equation, as is traditionally done, but from the wave equation
preceding the Helmholtz equation, and most importantly, more adequately
reflecting the wave nature of leaky modes.

2. Statement of the problem of modeling leaky modes
of symmetric waveguides

Consider (Figure 1) a symmetric three-layer planar waveguide consisting of
a dielectric film having the height ℎ with real refractive index 𝑛𝑓, surrounded
by a cladding layer with real refractive index 𝑛𝑐 < 𝑛𝑓.

The propagation of radiation in such structures is described by the Maxwell
equations, material equations [3]–[5], and boundary conditions that distinguish



328 DCM&ACS. 2019, 27 (4) 325–342

the class of solutions interesting for the researcher — in the present case, the
leaky modes [6]–[12], [26], [42].

Figure 1. Symmetric three-layer dielectric waveguide

The generally accepted model of the electromagnetic field in a planar
(infinitely extended along the 𝑂𝑦-axis) are fields that are independent of the
variable 𝑦. In this case, Maxwell’s equations are considerably simplified, since
𝜕𝐸𝛼/𝜕𝑦 = 𝜕𝐻𝛼/𝜕𝑦 ≡ 0 for any 𝛼 = 𝑥, 𝑦, 𝑧, and they are divided into two
independent subsystems — the subsystem for the so-called TE-modes and
for the TM-modes. The subsystem for the TE-modes can be represented as
a single wave equation for the master component 𝐸𝑦

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑧2 − 𝑛2 (𝑥)
𝑐2

𝜕2

𝜕𝑡2 ) 𝐸𝑦 = 0, (1)

with the boundary conditions

⎧{{
⎨{{⎩

𝜕𝐸𝑦

𝜕𝑥
− 𝑖𝑘0𝑝𝑐 (𝛽) 𝐸𝑦∣

𝑥=ℎ+0

= 0,

𝜕𝐸𝑦

𝜕𝑥
+ 𝑖𝑘0𝑝𝑐 (𝛽) 𝐸𝑦∣

𝑥=−0

= 0,
(2)

and the initial conditions

𝐸𝑦 (𝑥, 𝑧, 𝑡)∣ 𝑧=0
𝑡=0

= 𝐸0
𝑦 (𝑥) , (3)

where 𝑝𝑐 (𝛽) = √𝑛2
𝑐 − 𝛽2, and 𝑐 is the electrodynamic constant, 𝑛 (𝑥) is the

variable refractive index of the considered three-layer waveguide, defined
below. The subsystem for the TE-mode also includes two equations for the
connection of components 𝐻𝑥, 𝐻𝑧 with the master component 𝐸𝑦.

As a model of leaky modes propagation, we will consider Eq. (1), i.e., in
other words, we will consider the propagation of leaky modes in terms of
a wave process. As asymptotic boundary conditions, we will consider the
conditions of leaky modes corresponding to the Gamow-Siegert model [36]–
[40].
In the case under consideration, the function describing the refractive index

depends only on 𝑥, which makes it possible to separate the variables in Eq. (1).
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As a result, we obtain solutions corresponding to leaky modes propagating in
the positive direction of the 𝑧-axis:

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴+
𝑐𝑗 ⋅ exp{𝑖𝑘0√𝑛2

𝑐 − 𝛽𝑗
2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (4)

𝐸+
𝑦𝑗∣𝑥<ℎ

𝑥>0
= 𝐴+

𝑓𝑗 ⋅ exp{𝑖𝑘0√𝑛2
𝑓 − 𝛽𝑗

2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} +

+ 𝐵+
𝑓𝑗 ⋅ exp{−𝑖𝑘0√𝑛2

𝑓 − 𝛽𝑗
2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (5)

𝐸+
𝑦𝑗∣𝑥<0

= 𝐵+
𝑐𝑗 ⋅ exp{−𝑖𝑘0√𝑛2

𝑐 − 𝛽2
𝑗 𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (6)

where 𝜔 is the frequency, and 𝛽𝑗 are the eigenvalues of the non-self-adjoint
Sturm-Liouville problem with boundary conditions that extract the leaky
modes [3], [34], [41]:

⎧{
⎨{⎩

𝑋″ + 𝑘2
0𝑛2 (𝑥) 𝑋 = 𝑘2

0𝛽2𝑋,
𝑋′ (0) + 𝑖𝑘0√𝑛2

𝑐 − 𝛽2𝑋 (0) = 0,
𝑋′ (ℎ) − 𝑖𝑘0√𝑛2

𝑐 − 𝛽2𝑋 (ℎ) = 0,
(7)

The eigenfunctions of the problem (7) are defined as general solution of
the ordinary differential equation subject to the boundary conditions of this
problem, that is, they have the form

𝑋 (𝑥) =

⎧{{
⎨{{⎩

𝐴𝑐 ⋅ 𝑒𝑖𝑘0√𝑛2
𝑐−𝛽2(𝑥−ℎ), 𝑥 > ℎ,

𝐴𝑓 ⋅ 𝑒𝑖𝑘0√𝑛2
𝑓−𝛽2𝑥 + 𝐵𝑓 ⋅ 𝑒−𝑖𝑘0√𝑛2

𝑓−𝛽2𝑥, 0 < 𝑥 < ℎ,

𝐵𝑐 ⋅ 𝑒−𝑖𝑘0√𝑛2
𝑐−𝛽2𝑥, 𝑥 < 0

(8)

and the constants 𝐴𝑐,𝑓, 𝐵𝑐,𝑓 are determined from the field joining conditions

at the boundaries of the waveguide layer 𝑥 = 0 and 𝑥 = ℎ, which with Eq. (8)
taken into account constitute a homogeneous system of linear algebraic
equations:

⎛⎜⎜⎜⎜⎜⎜
⎝

1 −𝑒𝑖𝑘0𝑝𝑓ℎ −𝑒−𝑖𝑘0𝑝𝑓ℎ 0
𝑖𝑘0𝑝𝑐 −𝑖𝑘0𝑝𝑓𝑒𝑖𝑘0𝑝𝑓ℎ 𝑖𝑘0𝑝𝑓𝑒−𝑖𝑘0𝑝𝑓ℎ 0

0 1 1 −1
0 𝑖𝑘0𝑝𝑓 −𝑖𝑘0𝑝𝑓 𝑖𝑘0𝑝𝑐

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑐
𝐴𝑓

𝐵𝑓

𝐵𝑐

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

0
0
0
0

⎞⎟⎟⎟⎟⎟
⎠

, (9)

where 𝑝𝑐 = √𝑛2
𝑐 − 𝛽2, 𝑝𝑓 = √𝑛2

𝑓 − 𝛽2.

The homogeneous system of Eqs. (9) has a nontrivial solution if and only
if the determinant of the matrix of the system (9) is zero [43]. The equality
to zero of the determinant of the matrix of the system (9) can be achieved
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for some values of the spectral parameter 𝛽, which, in turn, determine the
eigenvalues of the problem (7).
In each subdomain 𝑥 > ℎ, 0 < 𝑥 < ℎ, and 𝑥 < 0 the solution of the wave

equation corresponding to the leaky modes is representable as a wave with
a complex wave vector. In the case of a field corresponding to leaky modes
running in the positive direction of the 𝑧-axis for 𝑥 > ℎ and 𝑥 > ℎ due to the
symmetry of the waveguide, the wave vector is determined as

�⃗�±
𝑗 = 𝑘0

⎛⎜
⎝

±√𝑛2
𝑐 − 𝛽2

𝑗

𝛽𝑗

⎞⎟
⎠

(10)

and in the waveguide layer (0 < 𝑥 < ℎ) there are two waves with wave vectors

�⃗�±
𝑓𝑗 = 𝑘0

⎛⎜
⎝

±√𝑛2
𝑓 − 𝛽2

𝑗

𝛽𝑗

⎞⎟
⎠

(11)

the modules of the wave vectors being equal to the corresponding wave

numbers: ∣�⃗�±
𝑗 ∣ = 𝑘0𝑛𝑐 and ∣�⃗�±

𝑓𝑗∣ = 𝑘0𝑛𝑓.

We formulate the problem of finding solutions corresponding to the leaky
modes as an eigenvalue problem for a differential operator with non-self-adjoint
boundary conditions (7), which we will further solve numerically.

3. Description of the algorithm for numerical solution
of the leaky mode problem

The spectral problem for a differential operator with non-self-adjoint bound-
ary conditions (7) is formulated numerically as a problem of approximate
determination of complex solutions of the equation

det𝑀 (𝛽) = 0, (12)

where 𝑀 (𝛽) denotes the coefficient matrix of Eqs. (9) [42]. In the case of
a problem similar to (7), but with self-adjoint boundary conditions, any
classical method of finding the real roots of the equation can be applied (see,
e.g., [44]–[46]). Our problem (7) is not self-adjoint, therefore, the eigenvalues
of this problem are generally complex and the standard methods for root
search can no longer be applied.
The problem (12) can be reformulated as a problem of finding the minimum

of a function of two variables as follows. The desired quantity 𝛽 = 𝛽′ + 𝑖𝛽″ is

a complex number. Any solution ̃𝛽 = ̃𝛽′ + 𝑖 ̃𝛽″ of Eq. (12) will be also a local
minimum of the non-negative function

𝐹 (𝛽′, 𝛽″) = |det𝑀 (𝛽′ + 𝑖𝛽″)|2. (13)

The eigenvalues corresponding to the leaky modes are localized in the first
quadrant of the complex plane Re (𝛽) > 0, Im (𝛽) > 0; moreover 0 < Re (𝛽) <
𝑛𝑐 (see Refs. [34], [47], as well as our papers [42]).
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To find all the local minima of function (11) in this region, it is proposed
to introduce a mesh in the region 0 < Re (𝛽) < 𝑛𝑐, 0 < Im (𝛽) < 𝐵, where
𝐵 is a constant that defines the boundary of the search for eigenvalues [42].
The nodes of the introduced mesh are used as initial approximations for the
numerical method of finding the minimum of the function of two variables (13).
In Refs. [42] the Hook-Jeeves method [48] was used, but there are also other
efficient numerical methods for zero-order multidimensional minimization [48].

4. Analysis of leaky modes in terms of inhomogeneous
plane waves

Consider the complex values

𝑝𝑐𝑗 = √𝑛2
𝑐 − 𝛽2

𝑗 = 𝑝′
𝑐𝑗 + 𝑖𝑝″

𝑐𝑗, 𝑝𝑓𝑗 = √𝑛2
𝑓 − 𝛽2

𝑗 = 𝑝′
𝑓𝑗 + 𝑖𝑝″

𝑓𝑗,

and 𝛽𝑗 = 𝛽′
𝑗 + 𝑖𝛽″

𝑗 in the solutions (4)–(6), explicitly distinguishing their real

and imaginary parts, which will allow us to reformulate Eqs. (4)–(6) in terms
of inhomogeneous waves, whose amplitude is also a function of coordinates 𝑥
and 𝑧:

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴+
𝑐𝑗 ⋅exp{−𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧}⋅exp{𝑖𝑘0𝑝′

𝑐𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} , (14)

𝐸+
𝑦𝑗∣𝑥<ℎ

𝑥>0
= 𝐴+

𝑓𝑗 ⋅ exp{−𝑘0𝑝″
𝑓𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧} ⋅ exp{𝑖𝑘0𝑝′
𝑓𝑗𝑥 + 𝑖𝑘0𝛽′

𝑗𝑧 − 𝑖𝜔𝑡} +

+ 𝐵+
𝑓𝑗 ⋅ exp{𝑘0𝑝″

𝑓𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧} ⋅ exp{−𝑖𝑘0𝑝′

𝑓𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} , (15)

𝐸+
𝑦𝑗∣𝑥<0

= 𝐴+
𝑠𝑗 ⋅exp{𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧}⋅exp{−𝑖𝑘0𝑝′

𝑐𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} . (16)

Consider the expression (14) in the form of an inhomogeneous wave

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴𝑐𝑗 (𝑥, 𝑧) ⋅ exp{𝑖𝑘0𝑝′
𝑐𝑗𝑥 + 𝑖𝑘0𝛽′

𝑗𝑧 − 𝑖𝜔𝑡} , (17)

where 𝐴𝑐𝑗 (𝑥, 𝑧) is the amplitude of the inhomogeneous wave defined as

𝐴𝑐𝑗 (𝑥, 𝑧) = 𝐴+
𝑐𝑗 ⋅ exp{−𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧} . (18)

Consider in more detail the inhomogeneous wave in the form (17) with
variable amplitude 𝐴𝑐𝑗 (𝑥, 𝑧). If such waveguide parameters exist for which
the inhomogeneous wave (17) of some 𝑗-th mode propagates in the direction
⃗𝑠𝑗 = (𝑘0𝑝′

𝑐𝑗, 𝑘0𝛽′
𝑗)

𝑇
, along which 𝐴𝑐𝑗 (𝑥, 𝑧) → 0, then such wave will decay

(of course, if such direction exists). If a direction ⃗𝑠𝑗 = (𝑘0𝑝′
𝑐𝑗, 𝑘0𝛽′

𝑗)
𝑇
exists,

along which 𝐴𝑐𝑗 (𝑥, 𝑧) = Const, then the wave (17) will become homogeneous

and, correspondingly, if a direction ⃗𝑠𝑗 = (𝑘0𝑝′
𝑐𝑗, 𝑘0𝛽′

𝑗)
𝑇
exists, along which
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𝐴𝑐𝑗 (𝑥, 𝑧) → ∞, then the wave will have infinitely growing amplitude along
such a direction.
Consider first the case 𝐴𝑐𝑗 (𝑥, 𝑧) = Const. The representation (18) allows

choosing a direction in the plane 𝑥𝑂𝑧, along which 𝐴𝑐𝑗 (𝑥, 𝑧) = Const. This

direction is described by the equation −𝑘0𝑝″
𝑐𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧 = 0. The symmetric
direction 𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧 = 0 will be responsible for the constant amplitude of

the inhomogeneous wave, corresponding to Eq. (16). The domain above the
line −𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧 = 0 corresponds to the domain of the amplitude growth,

as well as the domain below the line 𝑘0𝑝″
𝑐𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧 = 0 (see Figure 2).

Figure 2. Amplitude growth/attenuation regions and a constant amplitude line of an

inhomogeneous plane wave on 𝑥𝑂𝑧 plane

The region of existence of leaky modes corresponding to non-uniform waves
with non-increasing amplitude is shown in Figure 2 (the cone between two
dashed lines). Namely, if the wave vector of the non-uniform wave is located in
the cone between two dashed lines, then this leaky mode has a non-increasing
amplitude and can propagate in the positive direction of the 𝑧-axis.
Let us consider the inhomogeneous wave (14) in more detail. As shown in

Appendix (see (22)), in the region 𝑘0𝑝″
𝑐𝑗𝑥 + 𝑘0𝛽″

𝑗 𝑧 < 0 of a non-uniform wave
the amplitude will increase indefinitely, therefore we will consider the wave (14)
in the region 𝑘0𝑝″

𝑐𝑗𝑥 + 𝑘0𝛽″
𝑗 𝑧 ⩾ 0, see Figure 2. This exponential growth is

real within a limited transverse distance surrounding the origin [49]. Using
conservation of energy flux, one can show [49] that any mode that decreases
exponentially as it propagates must increase exponentially transverse to the
direction of propagation. However, it is evident that exponential growth of
the field (and mode energy) that extends to infinity is unphysical since we
have a finite energy source. A more detailed analysis of this problem is beyond
the scope of our paper.

5. Numerical analysis of leaky modes of symmetric
three-layer waveguides

Let us proceed to numerical analysis of the obtained representation of
the leaky modes (14)–(16). Since the structure of the waveguide under
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consideration is symmetric, it is sufficient to consider only Eq. (14). We
give in Figure 3 the calculated values of the complex phase deceleration
coefficient calculated for a waveguide with 𝑛𝑐=1.47, 𝑛𝑓=1.565, 𝜆 = 0.55 𝜇𝑚
and ℎ = 1.1𝜆.

Figure 3. Complex eigenvalues corresponding to the leaky modes of a symmetric waveguide

Let us analyze the distribution of the electric field strength of the first three
leaky modes at a fixed point in time.

(a) three-dimensional image (b) two-dimensional projection

Figure 4. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the first leaky mode

As seen from Figure 4, the field is concentrated in a cone formed by lines of
constant amplitude, and the maximum intensity is observed at the boundaries
of the cone where the amplitude is maximal. Outside the cone, there is an
area of infinite growth of the amplitude of inhomogeneous waves represented
by Eqs. (14)–(16); in this area the inhomogeneous waves characterizing the
leaky mode in cladding layers cannot exist.
Inside the guiding layer, on the contrary, the field represented by

Eqs. (14)–(16) attenuates rather rapidly and becomes almost completely
damped at a distance of several wavelengths. The fields in the coating layer
and the substrate are inhomogeneous waves, whose amplitudes decay expo-
nentially the stronger, the smaller the distance to the waveguide layer. Due
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to the rapid attenuation of the field in the waveguide layer and the gradual
removal (escape) of inhomogeneous waves, which characterize the behavior of
the leaky mode in the cladding layers, one can observe a virtual “separation”
of the leaky mode from the waveguide layer. A similar “separation” is also
characteristic of higher leaky modes (see Figures 5, 6).

(a) three-dimensional image (b) two-dimensional projection

Figure 5. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the second leaky mode

(a) three-dimensional image (b) two-dimensional projection

Figure 6. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the third leaky mode

Further propagation of the emerging mode occurs outside the waveguide
layer in the direction of the corresponding wave vectors in the upper and
lower cladding layers. The leaky mode will propagate at an angle 𝜃𝑗 =
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𝑎𝑟𝑐𝑡𝑔 (
Re (𝑝𝑐𝑗)
Re (𝛽𝑗)

) in the top layer and at an angle −𝜃𝑗 in the substrate in

the form of two independent inhomogeneous waves.
We also note that experimental data on the propagation of leaky modes,

which qualitatively agree with the results obtained by us, are given in [50]
(see Figures 4(b), 5(b), 6(b)). In the experimental studies given in [50], leaky
modes also propagate in a cone, and are also characterized by the presence of
“separation” of the leaky mode from the waveguide layer.
It is commonly assumed that for the leaky modes the amplitude increases

with the distance 𝑥 from the waveguide along the vertical axis (at a fixed
longitudinal distance 𝑧and in the absence of losses in the waveguide). However,
as it propagates along the axis 𝑧, this mode decays due to permanent energy
losses from the waveguide layer to the environment. Functionally, the fields
of leaky modes (vertical profile) are identical to the fields of ordinary guided
modes; however, since unlike normal guided (homogeneous) modes, the leaky
modes are inhomogeneous waves. In this regard, the representation of leaky
waves of planar waveguides using the solutions of the wave equation seems to
be preferable for us, compared to the traditionally used representation using
the solutions of the Helmholtz equation.
At the same time, some features were revealed that we plan to analyze

in our further publications. It is important to emphasize that the region
of existence of leaky modes corresponding to inhomogeneous waves with
non-increasing amplitude is detected (the cone between two dashed lines in
Figure 2). Moreover, if the wave vector of an inhomogeneous wave is located
in the region of the cone between two dashed lines, then such a leaky mode has
a non-increasing amplitude and can propagate for a sufficiently long distance
in the waveguide without absorption.

6. Conclusion

As is well known, conventional guided modes that exist when the waveguide
layer thickness is above the critical value are considered in the optical beam
representation as plane waves propagating in a regular waveguide due to the
total internal reflection of waves at the interfaces between the waveguide
media. From this point of view, the leaky waves propagate due to the effect of
disturbed total internal reflection: during each act of disturbed total reflection
at the interfaces of the media forming the waveguide, some of the power of
this guided mode is radiated, i.e. “flows out” into the space surrounding the
waveguide.
It is important to emphasize that the number of leaky modes with a gradual

leakage is limited, unlike the continuum of radiative modes. The resulting
gradual leakage waves form a discrete spectrum and are plane inhomogeneous
waves. On the contrary, the radiative modes form a continuum (their spectrum
is continuous) and are plane homogeneous waves. As a result, the replacement
of one kind of these waves with another kind requires serious analysis in
each specific case. From this point of view, the methods developed by us are
undoubtedly useful for theoretical and numerical studies of dielectric and, in
particular, optical waveguides supporting leaky modes, for example, when
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used as basic elements in the development of advanced sensors or various
interface elements in integrated optical processors.
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Appendix

Consider a wave similar to a plane monochromatic wave, but having a com-

plex wave vector �⃗� = (𝑘′
𝑥 + 𝑖𝑘″

𝑥
𝑘′

𝑧 + 𝑘″
𝑧

), that can be represented as a non-uniform

plane wave:

𝑈 (𝑥, 𝑧, 𝑡) = 𝐶 ⋅ 𝑒𝑖𝑘′
𝑥+𝑖𝑘′

𝑧−𝑖𝜔𝑡 ⋅ 𝑒−𝑘″
𝑥𝑥−𝑘″

𝑧𝑧. (19)

Lines of equal phase will be given by equations 𝑘′
𝑥𝑥 + 𝑘′

𝑧𝑧 = Const. Lines
of equal amplitude will be given by equations 𝑘″

𝑥𝑥 + 𝑘″
𝑧𝑧 = Const. Lines

of equal phase and equal amplitude will be orthogonal to each other in non-
absorbing media due to the fact that 𝑘2

𝑥 + 𝑘2
𝑧 = 𝑘2, where 𝑘 is the wave

number corresponding to the medium in which the wave propagates.

In more detail: 𝑘′2
𝑥 + 𝑘′2

𝑧 − 𝑘″2
𝑥 − 𝑘″2

𝑧 + 2𝑖 𝑘′
𝑥𝑘″

𝑥 + 2𝑖 𝑘′
𝑧𝑘″

𝑧 = 𝑘2 and
equating the imaginary parts of the quantities in the right-hand and left-
hand sides of this equality, we obtain a condition 𝑘′

𝑥𝑘″
𝑥 + 𝑘′

𝑧𝑘″
𝑧 = 0 that

represents the scalar product of vectors �⃗�′ = Re (�⃗�) and �⃗�″ = Im (�⃗�), which
is zero, therefore

�⃗�′⊥�⃗�″. (20)

Transition to phase-ray coordinates

We introduce new coordinates attached to the lines of constant phase and
constant amplitude:

{
𝜉 = 𝑘′

𝑥𝑥 + 𝑘′
𝑧𝑧

𝜂 = 𝑘″
𝑥𝑥 + 𝑘″

𝑧𝑧 (21)

By virtue of the previously established orthogonality property (20), the
introduced coordinate system will be orthogonal. In the coordinates 𝜉𝜂,
the form of the considered inhomogeneous plane wave (19) is considerably
simplified:

𝑈 (𝜉, 𝜂, 𝑡) = 𝐶 ⋅ 𝑒−𝜂 ⋅ 𝑒𝑖𝜉−𝑖𝜔𝑡. (22)

In the new variables, according to (22), the amplitude of the inhomogeneous
wave under consideration decreases along the positive direction of the axis
𝑂𝜂,. For each fixed 𝜂 = 𝑞 > 0 the non-uniform wave is characterized by the
amplitude 𝐶 ⋅ 𝑒−𝑞 and the behavior harmonic along 𝜉 (see Figure 7).
For each fixed 𝜉 = 𝑝, the amplitude of the non-uniform wave decreases in

the positive direction of the axis 𝑂𝜂 (see Figure 7).
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Figure 7. Profile of a leaky waveguide wave (mode) in phase-ray coordinates

In the half-plane 𝜂 < 0, the amplitude of the non-uniform wave will increase
indefinitely, therefore from the physical point of view the half-plane 𝜂 < 0
corresponds the so-called shadow region of the non-uniform wave under
consideration.
The proposed representation of a wave with a complex wave vector in the

form of an inhomogeneous plane wave and the subsequent introduction of
phase-ray coordinates clearly demonstrate the essential properties of such
waves and will be further used to analyze leaky waves.
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Вытекающие моды в планарных диэлектрических
волноводах
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В работе предложено новое аналитическое и численное решение волновод-
ной задачи для вытекающих мод планарного диэлектрического симметричного
волновода. В качестве асимптотических граничных условий использовались
граничные условия, соответствующие модели Гамова–Зигерта. Поставленная
начально-краевая задача допускает разделение переменных. Возникающая
в результате разделения переменных задача отыскания собственных мод откры-
тых трёхслойных волноводов формулируется как задача Штурма–Лиувилля
с соответствующими граничными и асимптотическими условиями. В случае
направляемых и излучательных мод задача Штурма–Лиувилля является самосо-
пряжённой, поэтому её собственные значения — действительные величины для
диэлектрических сред. Поиск собственных значений и собственных функций, со-
ответствующих вытекающим модам, сопряжён с рядом трудностей: задача на
собственные значения и собственные функции не является самосопряжённой,
поэтому собственные значения являются комплексными величинами, таким обра-
зом, задача нахождения собственных значений и собственных функций связана
с нахождением комплексных корней нелинейного дисперсионного уравнения.
В работе для решения этой задачи использовался метод минимизации нулевого
порядка. В работе дан анализ рассчитанных распределений напряжённости элек-
трического поля первых трёх вытекающих мод, показывающий возможности
и преимущества предложенного подхода.

Ключевые слова: интегральная оптика, волновод, задача Штурма–Лиувилля,
дисперсионное соотношение, вытекающие моды, компьютерное моделирование




