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Concepts of Stability and Instability:

Instability is a universal phenomenon, which may occur in various material bodies. The
fundamental concepts of stability and instability are clarified through the following defi-
nitions:

The state of a system is the collection of values of the system parameters at any instant of
time. For example, the positions of material points in a structure and the temperature field
at various points constitute the state of that system. The state of a system depends on sys-
tem parameters and environmental conditions. For example, in a shell structure, the sys-
tem parameters are geometrical and material properties. And the environmental condi-
tions are the applied forces and thermal conditions.

Stability - The state of a system, at any instant of time, is called stable if the relatively
small changes in system parameter and / or environmental conditions would bring about
relatively small changes in the existing state of the system.

Instability - The state of a system at any instant of time is called unstable if relatively
small. Changes in system parameter and / or environmental conditions would cause major
changes in the existing state.

Stability and Instability of Equilibrium - The equi-
librium state of a system is called stable if small
perturbations in that state, caused by load changes
or other effects would be confined to a vicinity of
the existing equilibrium state. The equilibrium state
of a system is called unstable if slight changes in ~ Fig. 1. Concept of stability and
conditions related to that state would force the sys- instability of equilibrium

tem away from that equilibrium state; an unstable

system would find other equilibrium state(s); the new equilibrium state(s) may be in the
vicinity of the initial state or may be far away from the initial equilibrium configuration.
The concepts of stable and unstable equilibrium are illustrated in Fig. 1 [1]. This figure
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shows a small ball lying on a smooth surface. According to the forgoing definitions, the
equilibrium state 1 is stable while state 2 is unstable [2]. The relativity of the foregoing
definitions is clearly demonstrated in this figure; the state 1 may be stable in a certain
limited region, but may be unstable in a larger domain.

Buckling is a special mode of instability of equilibrium which may occur in deformable
bodies subjected mostly to compressive loadings. So far as the structural problems are
concerned, an existing state of equilibrium or trend of behavior of the structure subjected
to applied loadings and / or temperature variations could be altered and the structure
could acquire a new equilibrium state or a new trend of behavior. This phenomenon is
termed the buckling of that particular structure. A well-known example of elastic buck-
ling instability is the flexural buckling of an axially compressed slender elastic column
subjected to a concentric compressive force. The type of applied loading affects the
modes of elastic instability. Loading systems are classified as conservative or
nonconservative. Dead loadings, such as the weight of structures, are conservative forces;
time dependent loadings, and the forces which depend on the state of the system are gen-
erally nonconservative. Conservative loadings are derivable from a potential function
whereas nonconservative forces have no generating potential. From this viewpoint, fric-
tional forces are nonconservative. Elastic bodies subjected to conservative forces may
loose their current equilibrium state and find other equilibrated configurations; this mode
of elastic instability is normally of the buckling type. The equilibrium of the same elastic
bodies subjected to nonconservative forces may become dynamically unstable; the system
could undergo oscillations with increasing amplitude. This mode of elastic instability is
called flutter. Thin panels or shells in contact with flowing fluids could develop a flutter
mode of elastic instability.

An Overview of Shell Buckling:

The equilibrium of thin elastic shells subjected to certain force fields may become unsta-
ble and the shell may undergo prebuckling, buckling, and postbuckling deformation. The
occurrence of buckling in thin shells is quite probable due to the fact that the thickness to
span ratio of shells is usually much lower than other structural elements. The response of
thin shells to compressive forces is essentially very different from the behavior of other
structural elements such as struts, columns, and plates; some types of thin shells are ex-
tremely sensitive to geometrical and loading imperfections. Geometrical imperfections
include all deviations in the shape of the structural member from an ideally assumed ge-
ometrical configuration. Thus, a slightly crooked column, in comparison with a perfectly
straight bar is considered imperfect. In the case of shells, the geometrical imperfection is
marked by deviation of middle surface geometry from a conceived ideal shape.

Loading imperfections are probable deviations of magnitudes and / or directions of ap-
plied Forces from assumed values and / or directions. As an example, an eccentrically
applied axial force to a straight column can be considered an imperfect loading. Loading
Imperfections, may be quantified by the so-called "imperfection parameters"; in the col-
umn problem, the axial force eccentricity could be chosen as an imperfections parameter.
Experiments performed on column and plates, under in-plane compressive conservative
forces, have shown that such elements are relatively insensitive to slight geometric and
loading imperfections. This is not the case in shell problems.

Buckling experiments carried out on shells have shown that some shells are very sensitive
to geometrical and loading imperfections. Thus the buckling load of laboratory shell
samples is normally smaller than the critical loads that a perfect system could sustain.
This is, on one hand due the fact that the actual shells are, by production, never geometri-
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cally perfect and also that an ideally perfect conceived loading can never be produced
and, on the other hand due to imperfection sensitivity of real shells.

The imperfection sensitivity of shells has important analysis and design implications; to
obtain a realistic estimate of buckling strength of shells, geometrical and loading imper-
fections must be taken into account.

Finite element modelling

An epitrochoidal shell structure [3] with fixed supports is depicted in Fig 2. It has been
analyzed under pressure and thermal loading. Thickness of the shell (4=1.0 c¢m) including
two layers ( , shown in Fig.3.The mechanical and thermal
material properties used in the present study have been listed in the Table 1.

Table 1. The mechanical and thermal material properties:

Material Ceramic ( Metallic (Steel)
Thermal expansion coefficient
Poisons’ ratio ( 0.25 0.25
Young’s’ modulus, 390 210
Density (kg/m’) 3890 7850
Conductivity( 25 40

In this study, finite element modelling of functionally graded cyclic shell (Epitrochoidal
shells) structures with uniform thickness % is considered as shown in Figure 2. Here, FG
epitrochoidal shell is modeled and analyzed in ANSYS through ANSYS parametric de-
sign language (APDL) code. A shell element (SHELL181), defined in the ANSYS li-
brary, is utilized to discretize the FG Epitrochoidal shell. This shell element has total six
degrees of freedom per node i.e., translations and rotations in the x, y and z directions.
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Fig.2. A discredited FG epitrochoidal shell
model

Buckling Analysis

4. Results and Discussions
In this section, the stability behavior of FG epitrochoidal shell is performed under pres-
sure and uniform temperature field (7 =700°K). The FG epitrochoidal shell is discretized

32



Structural Mechanics of Engineering Constructions and Buildings, 2016, Ne 6

and solved using finite element steps in ANSYS APDL platform [4]. Block Lanczos
method is used to obtain the eigenvalue bucking responses.
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Fig. 3. A discretized layers of the epitrochoidal shell model
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Fig.4. Displacement variation for FG epitrochoidal shell
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Fig.5. Rotation variation for FG epitrochoidal shell
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Fig. 6. Von Mises Stress variation for FG epitrochoidal shell
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Fig.7. Von Mises of total mechanical and thermal strain variation for FG epitrochoidal shell
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Fig. 8. X-component total mechanical and thermal strain variation for FG epitrochoidal shell
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Fig. 9. Y-component total mechanical and thermal strain variation for FG epitrochoidal shell
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Fig.10. Z-component total mechanical and thermal strain variation for FG epitrochoidal shell

Fig. 4 shows Displacement variation for FG epitrochoidal shell under pressure and ther-
mal loading. The overall displacement varies from 0.00 m to 0.021418 m.
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Fig. 5 shows Rotation variation for FG epitrochoidal shell under pressure and thermal

loading. The overall Rotation varies from 0.00 rad to 0.140126 rad.

Fig. 6 shows the Von Mises Stress variation for FG epitrochoidal shell under pressure and

thermal loading. The stress varies from 0.157-10°Pa to 0.116-10%%Pa.

Fig. 7 shows Von Mises of total mechanical and thermal Strain variation for FG

epitrochoidal shell under pressure and thermal loading. The strain varies from

—0.472-1073 to 0.375822.

Fig. 8 shows X- component of total mechanical and thermal variation for FG

epitrochoidal shell under pressure and thermal loading. The strain varies from
—0.033915 to 0.136443.

Fig. 9 shows Y- component of total mechanical and thermal Strain variation for FG

epitrochoidal shell under pressure and thermal loading. The strain varies from
—0.241228 to 0.109485.

Fig. 10 shows Z- component of total mechanical and thermal variation for FG

epitrochoidal shell under pressure and thermal loading. The strain varies from
—0.216307 to 0.270954.

5. Conclusions

In this study, the thermal bucking behavior of FG epitrochoidal shell under pressure and
uniform temperature field are investigated. In addition, temperature dependent material
properties of FGM constituents are considered. Finite element solution for the buckling
behavior of present FG model is proposed using Block Lanczos method. The influences
of different material and geometrical parameters on the thermal buckling of FG
epitrochoidal shell are illustrated. Finally, the change of the stresses, displacements, rota-
tions and stains were investigated and presented.
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PACYET HA YCTOMYHABOCTH ®YHKIIMOHAJIBHO-T'PAITMEHTHBIX
SIMUTPOXOUJAJBHBIX OBOJIOYEK

Marse XKunp-ynoe, N.T. @apxan, /1. Texomo

B macrosmmeli cratbe paccMaTpHBaeTCs YCTOWYMBOCT () yHKIMOHAIBHO-TPAINCHTHBIX AITH-
TPOXOHUTATBHBIX 000JIOUEK ITOX JaBJICHHEM M TEIUIOBOH cpensl. CBOIMCTBA MarepHuaia MpHHAMA-
I0TCSL KaK 3aBHUCAIIME OT TeMIeparypbl. KoHEUHO-371eMEHTHBIE PELIEHHS [TOIY4EHbl C IIOMOILBIO
nporpammHoro komrurekca ANSY'S. JInHelHbIe 3a1a9u Ha COOCTBEHHBIC 3HAYSHUS YCTOHIHBOCTH
pemIaeTcs ¢ MOMOIIBI0 O6J109HOr0 MeTosa Jlanmonra. BiusHue pa3nuaHOi TeoMeTpul 1 apaMmeT-
POB MaTepraia Ha KpUTHIECKYIO TeMIeparyp (GyHKIMOHAIBHO-TPAIHEHTHBIX SIMATPOXONIAILHBIX
000JI0UeK O] JaBJICHUEM U TEIJIOBOH Cpeloi HaryLIIHO MOKa3aHo. B KoHIle, H3MeHeHne Hamps-
KEHUH, TepeMeleHIH, BpalieHIH 1 neopMariiii H3ydeHbl U TPEICTaBICHBI.

KJIFOUEBBIE CJIOBA: ¢ yHKINOHATBHO-TPAIHEHTHBIE MAaTEPUAIIB], IUKITHIECKIE 000I09-
KH, SIIATPOXONJATBHBIE 000JI0YKH, MEXaHHIECKHE W TePMUYECKUE CBOICTBA MaTepHuaia, KOHCep-
BaTHBHBIIN, HEKOHCEPBATHBHBIH, CTAOMIFHOCTD, HECTAOMIIFHOCTH, AHATH3 IIOTEPH YCTOMIMBOCTH.
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