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A series of theoretical and experimental works is known which investigated the magnetic
properties of graphene structures. This is due, among other things, to the prospects of using
graphene as a material for the needs of the future nanoelectronics and spintronics. In particular,
it is known about the presence of ferromagnetic properties at temperatures up to 200 C and above
in a single-layer graphene films that are free from impurities. Previously there was proposed a
quantum field theoretical model describing the possible mechanism of ferromagnetism in graphene
as a result of spontaneous breaking of spin symmetry of the surface density of valence electrons.
The possible spatial configurations of the localized spin density were described.

In this paper we investigate such spatially localized nonlinear spin configurations of the
valence electron density on the graphene surface such as kinks, and their interactions, as well as
quasibound metastable states of the interacting kinks and antikinks, that are breathers. The
spectrum of such breathers is investigated. It is shown that under certain conditions, this
spectrum has a discrete sector, which, in turn, allows us to speak about the possibility of coherent
quantum generation of spin waves in graphene structures, which is important in terms of practical
applications in nanoelectronics and spintronics.
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1. Prerequisites of Building a Model of the Graphene
Ferromagnetizm

Today the standard theoretical model of electronic structure of single-layer graphene
film, which had been proposed in [1] and was investigated in a number of works [2-4] is
well known. Within this model, not all experimentally observed properties of graphene
can be satisfactorily explained. In several works (for example, see [5]) a high-temperature
ferromagnetizm not caused by any of three possible reasons: impurities, defects, borders,
was described, and in [6] processes of spin-polarized current pulses in the graphene film
were experimentally observed. We offer and investigate the theoretical model describing
collective spin- electronic properties of the single-layered graphene structures forming
two-dimensional surfaces, connected with existence on these surfaces of nonzero function
of distribution of the spin density formed as a result of spontaneous violation of spin
symmetry of valency electrons of atoms of carbon on specified surfaces. As the spin density
is proportional to magnetization density, this model allows describing ferromagnetic
properties of the graphene structures.

Within the limits of offered model transition from consideration of the discrete two-
dimensional carbon lattice forming graphene film, to the continuous two-dimensional
surface tensed on this lattice is carried out. The specified two-dimensional surface is
configuration space of the model. Thus, we carry out transition to the continual field
model. Such approach seems to be natural as it is known that, in particular, in graphene
structures the fourth valence sp-electron of carbon is collective, and its wave function
isn’t localized on a lattice knot. Thus spin states of the wave function of valence electrons
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system of a graphene layer define some function of spin density on two-dimensional
configuration space of the model. We will consider this function, as some (classical)
nonlinear function of a field on a two-dimensional surface. In considered model function of
spin density is admissible trivial, identically equal to zero. Being based on the above-stated
experimental data, suppose, that this symmetric field configuration can spontaneously
be broken to some physically observed

As we noted earlier [7,8] and as recently it was confirmed in works [9,10], within classical
nonrelativistic field model the analog of the well-known Goldstone theorem, according
to which each broken generator of initial symmetry of a field system corresponds to the
massless scalar not charged boson (which in our case may be called spinon) takes place.

In this case spontaneous violation of spin symmetry within the offered model should
lead to existence on graphene surfaces of quasi-particles—spinons (magnons) being vector
bosons in the 3rd dimensional physical space and scalar bosons in two-dimensional
configuration space of model as a projection the quasi-particle spin on configuration space
of the model is always equal to zero.

From the physical point of view essentially that existence of collective effects in spinon
system, caused by influence of the total magnetic field created by all spinons on each
spinon and spontaneous violation of spin symmetry in such system means nonlinearity of
the corresponding field equations and, as a result, existence of the possibility on graphene
surfaces of the soliton configurations depending on a form and topology of a surface.

Besides, existence of the collective nonlinear interactions in spinon ensemble should
lead to emergence of effective spinon mass by Higgs’s mechanism that also should affect
observable physical consequences though owing to a small value of such interactions it
is hardly possible to expect great values of this mass.

So, it is visible that the equations for the required scalar field which has been set
on some two-dimensional surface, should be nonlinear and certain on this surface any,
generally speaking, forms and topology. The form and topology in this case define
boundary conditions for the field function. The specified function defines conditions
of existence, a configuration and dynamics of quasi-particles of this field on the set
two-dimensional surface.

In particular, field equations, describing massless nonlinear scalar quasi-particles, known
in the quantum theory, possess above specified properties.

Thus, for the description of spinon excitations on graphene surfaces we use one of
options of nonlinear field model that allows calculating eigen solutions, effective masses,
topological invariants, energy spectra, dynamics of various nonlinear spinon configurations,
and other characteristics of the spinon statistical ensemble.

Let’s make transition from a discrete set of knots of a 2D hexagonal lattice in which
not coupled electrons can be localized, both the corresponding electronic and spin density,
to the continual representation of the corresponding configuration space.

The classical field model describing spontaneously broken symmetry is nonlinear.
Among nonlinear models the elementary and the known A¢* model is rather well studied.
We believe [7,8] that as a first approximation we can describe with its help characteristics
of spin waves of interest to us, their spectra in graphene, ferromagnetic domain structure
and other characteristics important for the practical applications.

The model has kink and antikink exact solutions and their quasibounded states
(breathers), which we will obtain numerically. We will use the energy of the kink-
antikink interaction [7, 8] for the numerical solution of the Schrédinger equation for
modeling quantum dynamics of breathers, underlying the description of spin waves. In
model there are quasibounded kink-antikink states, having a discrete spectrum. It al-
lows to put, in particular, a problem of creation of inverse density of population and
implementation of quantum generation of spin waves.

Further we will discuss the obtained results and their consequences.
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2. Nonlinear Model

Let’s consider as an example the nonlinear model A¢* in order to show results of
qualitative and numerical research of spin waves in a single-layered graphene film. Let’s
consider nonlinear model of a scalar field on a two-dimensional surface with the Lagrangian:

1

y A 2
L{p} = 5 (Qvpd w)—z(wz—wﬁ) , v=0,1,2; p=p(z,y,t); po>0; A>0. (1)

Field function here is proportional to two-dimensional spin density.
The equations of a field and boundary conditions look like

[0,0” = Agg] @ = A® =05 Jp(a,y, 1) < o, Va,y,t. (2)
It is known that this nonlinear equation has a set of static vacuum solutions

Pvact = :t(PO (3)
And also kink-antikink solutions

2

v+ () = £y tanh < /\;Oox> . (4)

In the field of zero kink and antikink have the domain wall dividing areas with opposite
signs of magnetization. The elementary magnetic moment in our model is the full
magnetic moment of an elementary cell.

We investigate system of interacting kink and antikink, located at a distance a(t) one
from another. Let’s choose field function in a way

p(r,a) = [pyr(x+a) +¢_(r —a) —go]; a>0. (5)

We see that field function (5) at small values of a spatially is localized near x = 0
and has the following asymptotics:

o(z,+00) = —po;
o(+00,a) = —po;  p(—00,a) = —o;
@l (+00,a) = 0; ¢l (—00,a) = 0.

We also see that kink and antikink, divided on rather big (in comparison with “thickness”
of a kink) distance, nevertheless, keep the form.

Let’s consider the Hamilton function of the system:

“+oo

Hipa) = [ o { oot 0" p(e.a)] + § [otoa - )} 6)

— 0o

This function can be considered as a function of total energy of the kink-antikink system,
and we can formally investigate its dependence on a. Dependence of a Hamiltonian on
a corresponds to dependence of potential energy of the kink-antikink interaction on a
distance between them. If there are minima of this function, it is natural to expect
existence of discrete spectra of the bound states in the kink-antikink system near these
minima. It will be required breathers.
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For quantum mechanical stationary wave function of a breather it is possible to write
down the Schrodinger equation:

n? d?
5y da? + U{p,a}| ¥p(a) = EVy(a). (7)
Here my is an effective mass of a breather which is equal to the sum of masses of kink
and antikink, U{p,a} is a potential part of a total energy of the breather, depending
from a, F is an energy of a state. Movement of a breather on the generalized coordinate
a physically corresponds to a distance change between kink and antikink.
Let’s find the bound states of the kink-antikink system near a minimum of the potential
of interaction. This problem can be solved numerically.

3. Numerical Calculations for the Model of Nonlinear Spin
Waves in Graphene

Numerical modeling studies start with the approximate solution (5) of (2). To begin
with we calculate the dependence V (a) = H {¢,a} of (6). Calculations were performed
using an adaptive procedure, the integration of functions, based on the method of Newton—
Cotes with different numerical values of the parameters A and ¢g. As an illustration we
plot the graph of the function Vj ,, (a) at A = 0.2 and ¢ = 4.0 (see Fig. 1).
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Figure 1. The graph of potential energy breather

As can be seen from the graph, the discrete spectrum of (7) is located in the inter-
val [0.0;53.96954]. With the numerically solved (grid) function V) ,,(a) we solve the
Schrédinger equation (7) by the Ritz method using Hermite functions as coordinate func-
tions. The Ritz method reduces the problem on the axis of the differential equation (7) into
eigenvalue and eigenvectors problem for the Ritz matrix, as calculated by the formulas:

h? d?
I S — V 8
< 2m{)\7¢0}d 2+ Am(@)‘%> ( )
where 1); are Hermite functions.

The eigenvectors are sought in the form

;i\ po; a EC {\ o} i, (9)

M;j{X, o} = <7;Z}i
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so that the problem on the eigenvalues and eigenvectors is formulated as
M AN 90} Ci A o} = Bj{\ 0} G5 {\, 9o} - (10)

Calculating matrix elements (8) and a solution of (10) were performed in a program.
As an illustration we give the five lowest calculated eigenvalues belonging to the discrete
spectrum of the operator (7), and the corresponding eigenvectors (grid function) given
by (9) for the numerical values of the parameters A = 0.2 and ¢y = 4.0 (see Fig. 2).
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Figure 2. The eigenvalues and eigenfunctions of the original problem

Even these examples indicate a non-trivial structure of the spectrum of eigenvalues of
the operator (7). Namely, the structure of the spectrum in Fig. 3. shows the fundamental
possibility of population inversion.

This, in turn, confirms our thesis (see [7,8]) about the possibility of generation of
spin waves.
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Figure 3. The relative position of the spectral values of the breather

4. Discussions and conclusions

Results of numerical calculations allow to make a number of practically important
conclusions. First of all, we see that within the offered nonlinear model existence of
metastable kink-antikink bound states for the function of spin density on a two-dimensional
graphene surface is possible. These states may form a discrete spectrum. Thus numerical
calculations show that interval change between the next levels generally decreases with
the energy growth, and since some value of energy the spectrum becomes continuous.
At the same time we see that the interval between the next levels, in some local cases,
isn’t monotonous function, and has local extrema. Existence of such extrema allows to
argue that it is possible to expect existence in a energy spectrum of spin-breathers in
graphene film of metastable states, which lifetime is more than lifetime of the states
being below on energy. In this case we can speak about possibility of creation of inverse
density of population in spectra of breathers, and, respectively, about quantum coherent
generation of spin waves.
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ITpocreiiiasg Mogeib HEJIMHENHBIX CIIMHOBBIX BOJIH B
rpadeHOBBIX CTPYKTYypax

. C. Kynaoos*', K. II. JloBeukuii*, Jle Aup Hpar*

* Kagpedpa npuxaadnoti un@opmamuru u meopuy 6Epoammocmer
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Murayxo—Maxaan, 0. 6, Mockea, Poccusn, 117198
t Jla6opamopus undopmayuornvx mexrnorozut
063e0UHERHBIT UHCMUMYM A0EPHBIT UCCAEI08AHUT
ya. HKoauo-Kropu, 0. 6, 2. Jybna, Mockosckasn obaacmsv, Poccus, 141980

W3BecTeH psiji 9KCIIEPUMEHTATBLHBIX U TEOPETUIECKUX PAOOT, B KOTOPBIX UCCJIEIOBAJINCH Mar-
HUTHBIE CBOMCTBA TPadEHOBBIX CTPYKTYP. DTO BBI3BAHO MEPCIIEKTUBAMU UCIIOIH30BaHUS Ipadena
B KadecTBe MaTepuaJa JJisi Hy»KJ Oyaylieil HAHOSJIEKTPOHUKY U CIMHTPOHUKU. B yacTHOCTH,
U3BECTHO O HAJIMYMHU (DEPPOMATHATHBIX CBOACTB npu Temieparypax 10 200°C u Bblie B 0JHOCIOMN-
HBIX IJIEHKAaX rpadena, cBOOOMHBIX OT mpumMeceii. Paree 6bu1a mpemioKena MOIEIb KBAHTOBOTO
I10JIs1, ONKCBHIBAOIIAsT BO3MOXKHBIN MexaHu3M (peppoMartserusma B rpadeHe B pe3yJibraTe CIIOH-
TaHHOTO HAPYIIEHUsI CITUHOBOM CHUMMETPUH MOBEPXHOCTHOM MJIOTHOCTU BAJIEHTHBIX JIEKTPOHOB.
Ornrcanbl BO3MOXKHBIE TPOCTPAHCTBEHHDBIE KOH(MUTYPAINY JIOKAJN30BAHHON CIIMHOBOM MIJIOTHOCTH.

B sTo0it pabore mccienyoTcsi MpOCTPAHCTBEHHO JIOKAJIN3OBAHHBIE HEJNHEHHBIE CITMHOBBIE KOH-
durypanum WIOTHOCTH BaJEHTHBIX JIEKTPOHOB Ha IIOBEPXHOCTH IrpadeHa, Takne KaK KUHKH, UX
B3aMMO/IEIICTBIE, & TAKXKE METACTAOMIIbHBIE COCTOSTHUS B3aMMOIAEHCTBYIOMNX KUHKOB U aHTHUKIH-
KOB, sBJIstonuxcs 6pudepamu. Mcenemosan ciekrp 6pusepos. [lokazaHo, 4T0 IpU OMpPeIeTEHHBIX
YCJIOBUSIX 9TOT CIIEKTD MMeeT JIUCKPETHBIN CeKTOp, YTO, B CBOI OYepellb, IO3BOJISIET TOBOPUTDH O
BO3MOXKHOCTH KOT€PEHTHOI KBaHTOBOI T'€Hepallny CIIMHOBBIX BOJH B IPA(EHOBBIX CTPYKTYpax,
9TO BayKHO C TOYKM 3PEHUST MPAKTUIECKOTO MPUMEHEHNsI B HAHOIJIEKTPOHUKE U CIUHTPOHUKE.
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