УДК 558.98

ТЯНЬ-ШАНЬ — ОБЛАСТЬ СОПРЯЖЕНИЯ ПАЛЕОЗОЙСКИХ КОЛЛИЗИОННЫХ СКЛАДЧАТЫХ СИСТЕМ АЗИАТСКОГО ПАЛЕООКЕАНА И ОКЕАНА ПАЛЕОТЕТИС

В.И. Троицкий

Кафедра геологии месторождений полезных ископаемых и их разведки Инженерный факультет
Российский университет дружбы народов
ул. Орджоникидзе, 3, Москва, Россия, 117923

Обсуждаются история развития и особенности сопряжения палеозойских складчатых поясов и систем Азиатского палеоокеана и океана Палеотетис.

Ключевые слова: геодинамическое районирование складчатых поясов и систем, геодинамический режим пассивных и активных окраин, формации, литогеодинамические комплексы

Различают два главных типа палеозойских складчатых поясов — межконтинентальные и окраинноокеанические. Каждый из них отражает сложную историю палеоокеана и преобразование входящих в него структур в складчатую область [3]. По периферии Пацифика (Тихий океан) выделяется периокеанический складчатый пояс. К межконтинентальным поясам относятся Северо-Атлантический, Альпийско-Гималайский и Урало-Охотский, возникшие при закрытии палеоокеанов Япетус, Тетис и Азиатского (рис. 1).

С начала прошлого века большинство исследователей Средней Азии выделяли на ее территории Северный, Срединный и Южный Тянь-Шань и примыкающие к последнему Таримский, Каракумо-Таджикский и Устюртский массивы. На юге их обрамляют складчатые системы Памира, Паропамиза, Биналуда и Копетдага. Согласно господствовавшей тогда фиксистской геосинклинальной теории они представляют геосинклинальные системы, возникшие в ходе байкальской, каледонской, герцинской и альпийской складчатостей. В их внутреннем строении принимают участие срединные массивы и разделяющие их линейноскладчатые зоны. При этом подчеркивалось, что каждая из этих структур отличается как особенностями внутреннего строения, так и составом образующих их формаций.

В настоящее время история развития структур и их районирование рассматриваются с мобилистских позиций тектоники литосферных плит, а возникновение складчатых систем объясняется эволюцией океанических бассейнов и их преобразованием в коллизионно-складчатые области. Их формирование связывают с историей океанических бассейнов, развитие которых сказывалось как на линейно-складчатых системах, так и разделяющих их стабильных массивах-микроконтинентах [1—3]. Тянь-Шань — единственный регион, где непосредственно сопрягаются структуры Азиатского и Тетического палеоокеанов, что открывает большие возможности для их сравнительного анализа [6].

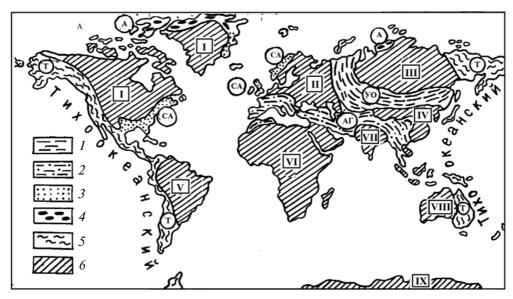


Рис. 1. Главные складчатые пояса фанерозоя в современной структуре Земли (по К. Сойферту и Л. Сиркину, с изменениями В.Е. Хаина): межконтинентальные складчатые пояса: 1 — Урало-Охотский (УО), 2 — Альпийско-Гималайский (АГ), 3 — Северо-Атлантический (СА). Окраинно-континентальные складчатые пояса: 4 — Арктический (А), 5 — Тихоокеанский (Т), 6 — древние платформы: I-III — Лавразийские (І — Северо-Американская, ІІ — Восточно- Европейская, ІІІ — Сибирская); Гондванские (IV — Китайские, V — Южно-Американская, VI — Африканская, VII — Индийская, VIII — Австралийская, IX — Антарктическая)

Центральное место в предложенных геодинамических реконструкциях занимают океанические бассейны и разделяющие их микроконтиненты. От количества сутур — следов закрывшихся океанических бассейнов зависит содержание геодинамических карт (рис. 2). Например, одни исследователи главное внимание уделяли Туркестанскому палеоокеану [1; 2; 5]. Другие историю Тянь-Шаня связывали также с развитием Зеравшанского бассейна [6; 7].

В работе принята следующая латеральная с севера на юг последовательность основных структур [6]: Улутау-Северо-Тянь-Шаньский микроконтинент, Срединно-Тянь-Шаньский микроконтинент, Туркестанский палеоокеанический бассейн, Алайский и Таримский микроконтиненты, Зеравшанский палеоокеанический бассейн, Каракумо-Таджикский микроконтинент. Океан Палеотетис отделял Каракумо-Таджикский микроконтинент от континентальных массивов северной окраины Восточной Гондваны. Заложение Мезотетиса сопровождалось отчленением в мезозое соответствующих микроконтинентов-отторженцев континентальных блоков Гондваны. Завершают латеральный ряд структуры Неотетиса и континентов Гондваны (см. рис. 2).

Важно заметить, что каждый из океанов имел необычайно сложное внутреннее строение и включал разновозрастные океанические бассейны, часто разделенные микроконтинентами [3; 6]. Закрытие этих бассейнов происходило не одновременно, что приводило к формированию разновозрастных байкальских, каледонских и герцинских складчатых систем (рис. 3).

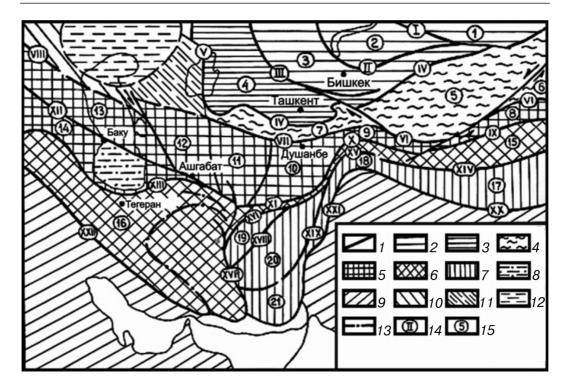
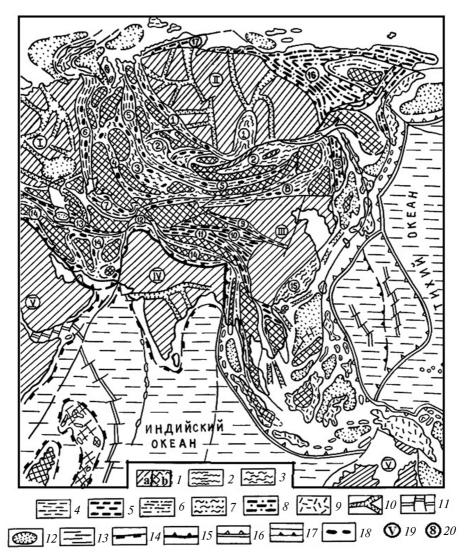
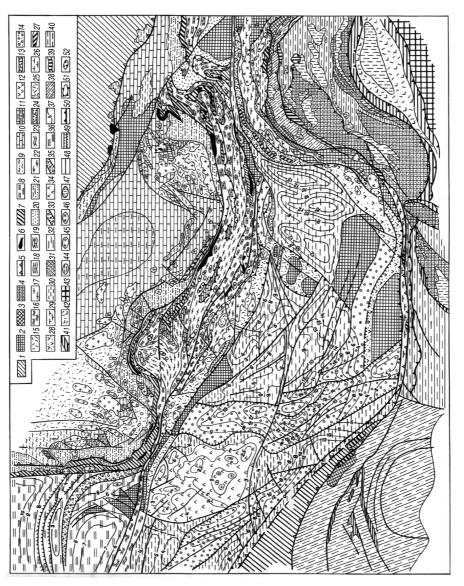



Рис. 2. Фанерозойские сутуры океанических бассейнов в составе Урало-Охотского и Альпийско-Гималайского складчатых поясов в Средней и Высокой Азии: 1 — сутуры палеоокеанических бассейнов: $I - V - \Pi$ алеоазиатского океана (I - Джунгарская, II — Джалаир-Илийская, III — Киргизско-Терскейская, IV — Туркестанская, V — Уральская); VI—XIII — Палеотетиса (VI — Восточно-Куньлуньская, VII — Зеравшанская, VIII — Северо-Скифская (выделяется условно), IX — Западно-Куньлуньская, X — Ишимская, XI — Герирудская, XII — Кавказская, XIII — Биналудская); XIV—XXII — Мезо- и Неотетиса (XIV — Пангонг-Нунцзянская, XV — Рушан-Пшартская, XVI — Фарахрудская, XVII — Зебол-Болух, XVIII — Хашрудская, XIX — Дарирудская, XX — Ярлунг-Цангпо, XXI — Сулейман-Киртарская, XXII — Загросская), 2-4 — микроконтиненты Азиатского палеоокеана: 2 — Казахский (блоки — Джунгарский (1), Балхашский (2), Северо-Тянь-Шаньский (3); 3 — Южно-Тянь-Шаньский (4); 4 — Таримский (5), Цайдамский (6), Алайский (7); 5-6 — микроконтиненты Палеотетиса: 5 — северная группа микроконтинентов: Центрально-Куньлуньский (8), Северо-Памирский (9), блоки Каракумо-Таджикского микроконтинента (Афгано-Таджикский (10), Амударьинский (11), Каракумский (12), Центрально-Каспийский (13); 6 — южная группа микроконтинентов: Джантангский (15), Киммерия (16); 7 — микроконтиненты Мезо- и Неотетиса: Лхасский (17), Южно-Памиро-Каракорумский (18), Фарахрудский (19), Гильменд-Аргандабский (20), Катавазский (21); 8 — Южно-Каспийская субокеаническая впадина; 9 — Индийская и Африканская континентальные плиты Гондваны; 10 — Русская платформа; 11 — Устюртский блок Русской платформы; 12 — Прикаспийская субокеаническая впадина; 13 — позднемеловые сутуры субокеанического бассейна (Себзевар, Наин, Барф); 14 — порядковый номер сутур; 15 — порядковый номер микроконтинентов

В основу районирования положено выделение осадочных, магматических и метаморфических формаций, объединенных далее в литогеоформационные комплексы — главные индикаторы геодинамических режимов и порождаемых ими структур. Их латеральная зональность кладется в основу геодинамического районирования для определенных стадий развития региона, а вертикальная последовательность отражает особенности геодинамической эволюции структур во времени [6].

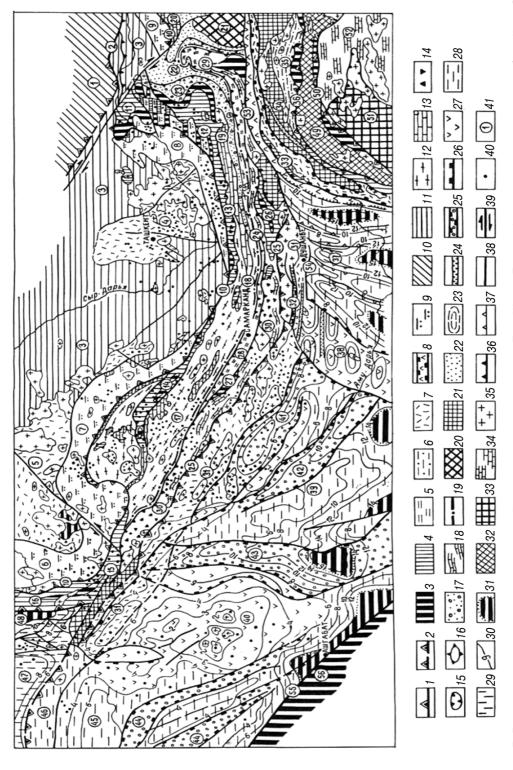

Рис. 3. Схема тектонического районирования Азии: 1 — регионы с докембрийской корой: 1а — древние платформы (кратоны): І — Восточно-Европейская; ІІ — Сибирская; ІІІ — Китайская; IV — Индийская; V — Австралийская; 1b — микроконтиненты; 2—9 — межконтинентальные коллизионные складчатые системы, возникшие в ходе закрытия и финальной коллизии структур палеоокеанов: 2—4 — Азиатского палеоокеана: 2 — байкальская Енисейско-Саянская складчатая система (1); 3 — каледонские Колыван-Томская (2); Джунгаро-Балхашская (3); Киргизско-Терскейская (4); 4 — герцинские Зайсан Гобийская (5), Уральская (6); Южно-Тянь-Шаньская (7) и Южно-Монгольская (8) складчатые системы; 5—6 океана Тетис: 5 — каледоно-герцинские Наньшаньская (9); Цинлиньская (10); Куэньлуньская (11); Северо-Памирская (12); Паропамизская (13) складчатые системы Палеотетиса; 6 — киммерийско-альпийские складчатые системы Мезо- и Неотетиса (14); 7—9 — окраинно-континентальные (аккреционные, субдукционные) складчатые системы, возникшие в ходе аккреции структур активных окраин Тихого океана: 7 — каледонская Катазийская системы (15); 8 — киммерийские Верхояно-Чукотская (16); Таймырская (17) и Сихоте-Алиньская (18) складчатые системы; 9 — кайнозойские системы; 10 — авлакогены, рифты; 11 — срединноокеанические хребты; 12— субокеанические впадины, в том числе задуговые; 13— литосфера Тихого и Индийского океанов; 14 — пассивные окраины континентов; 15 — зона внутриконтинентальной субдукции; 16 — зона субдукции океанической литосферы, сопровождаемая глубоководным желобом и островной дугой; 17 — сбросы, надвиги; 18 — офиолиты; 19 — порядковый номер платформ; 20 — порядковый номер складчатых поясов

На рисунке 4 отображено геодинамическое районирование палеозойских структур на основе анализа латеральной и временной последовательности формаций и литогеодинамических комплексов. Океанический ряд литокомплексов представлен офиолитовыми сериями с сопровождающими их энсиматическими островными дугами и глубоководными, преимущественно силицито-карбонатными формациями. Комплексы субдукционных окраин андийского типа сопровождаются специфическим магматизмом с характерным для него щелочным трендом. С развитием таких окраин связан рифтогенез, вплоть до субокеанического с полным разрывом коры. Закрытие океанических бассейнов реконструируется по появлению покровов и коррелянтных с ними флишем и олистостромами. На этапе коллизии широкое развитие получают коровый гранитоидный магматизм, флишевые и молассовые формации, формируются парные метаморфические пояса. Для завершающего этапа развития коллизионных орогенов характерен специфический внутриплитный магматизм.

На рисунке 5 показана последовательность сопряжения геодинамических структур Тянь-Шаня и Памира в составе микроконтинентов и разделяющих их линейно-складчатых систем палеокеанических бассейнов. В пределах каждого из них подчеркиваются особенности их внутреннего строения, степень деформированности формационных подразделений, характер границ между ними и многие другие признаки для их геодинамической идентификации. Внутреннее строение коллизионных складчатых систем подчеркивается проявлениями встречных покровов с сопровождаемыми их олистостромами, клиппенами и тектоническими окнами. Обращает на себя внимание, что на палеозойском этапе развития Каракумо-Таджикского микроконтинента формировались крупные грабены-авлакогены с резко редуцированным разрезом консолидированной земной коры с возможным образованием субокеанических окон в их пределах.

Длительная история бассейнов Палеоазиатского океана и Палеотетиса завершилась к концу палеозоя формированием покровно-складчатых, коллизионных систем, спаявших воедино Восточно-Европейский, Сибирский и Таримский континенты и размещенные между ними микроконтиненты, вошедшие в состав Лавразии. Океанические бассейны и покровно-складчатые системы берут начало с рифтогенной деструкции северной окраины Восточной Гондваны. Развитие рифтов привело к возникновению нескольких поколений океанических бассейнов. В конце протерозоя и в кембрии произошло заложение Киргизско-Терскейского бассейна. Он вплоть до конца силура разделял Кокчетав-Северо-Тянь-Шаньский микроконтинент от Южно-Тянь-Шаньского, входившего вместе с Алайским микроконтинентом в состав Большого Тарима. Одновременно на юге открылся Куньлуньский палеоокеан, как составная часть Палеотетиса.

Важной вехой в истории Тянь-Шаня явилось закрытие Киргизско-Терскейского палеобассейна, что привело к возникновению Киргизско-Казахского микроконтинента, объединившего в себе Кокчетав-Северо-Тянь-Шаньский и Срединно-Тянь-Шаньский микроконтиненты. Следующий этап развития Тянь-Шаня связан с эволюцией заложившихся почти одновременно в ордовике Туркестанского и Зеравшанского океанических палеобассейнов, обособивших расположенный между ними Алайский микроконтинент.



ненты, 5 — сутуры океанических бассейнов, 6 — палеозойские палеоокеанические бассейны: 6 — высокометаморфизованные офиолитовые комплексы в составе аккреционных призм: габбро-перидотиты, пиллоу-базальты, кремнисто-карбонатные отложения (кембрий-силур?); 7 — менее метаморфизован-**Рис. 4.** Геодинамическое районирования палеозойских складчатых систем Средней и Высокой Азии и Туранских равнин: 1 — Киргизский микроконтинент, микроконтиненты, 3 — микроконтиненты Киммерия и Центрального Памира, 4 — Каракорумский, Гельменд-Аргандабский и Фарахрудский микроконти-2—4 — докембрийские метаморфические комплексы основания (цоколя) микроконтинентов: 2 — Срединно-Тянь-Шаньский и Каракумо-Таджикский

ативной окраины: вулканогенные, вулканогенно-осадочные формации, (средний карбон-пермь); 16–20 — Алайско-Таримский микроконтинент: 16 — эпи 33 — рифтовые системы: осадочные, возможно, вулканогенно-осадочные формации (палеозой), 34 — ареалы проявлений позднепалеозойского вулканизбрийского метаморфического основания (цоколя) микроконтинентов (км); 38—39 — микроконтиненты Киммерия и Центрального Памира: 38 — осадочный Неотетиса; 42 — островные дуги — комплекс осадочно-вулканогенных формаций; 43 — Индийский континент; 44—47 — интрузивные формации: 44 — нижнепалеозойские, 45— верхнепалеозойские, 46— триасовые, 47— мел-палеогеновые; 48— разломы; 49— тектонические уступы; 50— надвиги; 51— текоигенная, вулканогенно-карбонатно-терригенная, терригенно-карбонатные, терригенные формации (кембрий-нижний силур); 10 — карбонатная платфорсремнистая, кремнисто-метатерригенная формации (кембрий-нижний ордовик?); 17 — глубоководный бассейн: метатерригенно-кремнистая, черносланнижний карбон); 29 — вулканогенно-осадочный чехол микроконтинента: терригенно- карбонатная и карбонатная (серпухов-верхний карбон), вулканогенформации (силур-средний карбон); 9—15 — Срединно-Тянь-Шаньский микроконтинент; 9 — шельф и континентальный склон; карбонатно-кремнисто-тер но-терригенные, карбонатно-терригенные и рифовые (пермь) формации; 30 — континентальный склон: флишевые и аспидные тонкотерригенные формама шельфа: карбонатные формации мелководных бассейнов (девон-нижний карбон); 11 — карбонатная платформа и внутренний звапаритовый бассейн: флишевые формации (силур), карбонатные платформы: карбонатные формации (девон-средний карбон); *20* — шельф,подножье: терригенные мелководофиолитового ряда (габбро-перидотиты, дайковый комплекс, пиллоу-базальты), карбонатно-кремнистая формация (нижний карбон); 25 — вулканогенноции (карбон-пермы); 31 — островодужный комплекс и задуговые формации (карбон-пермы); 32—34 — эпиконтинентальные бассейны Каракумо-Таджиккарбонатные и эвапоритовые формации (девон-нижний карбон); 12 — активная вулканогенная окраина: терригенно-вулканогенные формации (нижнийосадочный рифтогенный и осадочный комплексы активной окраины: вулканогенные, вулканогенно-осадочные рифтогенные, терригенные флишевые и комплекс: серпентинитовый меланж, натровые пиллоу-базальты (нижний карбон); 28 — вулканогенно-терригенные, карбонатно-кремнистые формации ма; 35—36 — эпиконтинентальные бассейны Устюртского микроконтинента: 35 — осадочный чехол микроконтинента: преимущественно терригенные и карбонатные формации (палеозой); 36 — рифтовая система: терригенные формации (поздний палеозой-триас); 37 — глубина залегания кровли докемвулканогенно-осадочные отложения (ордовик-нижний карбон); 8 — глубоководный океанический бассейн; конденсированные кремнисто-карбонатные цевая, терригенные аспидные и флишевые формации (средний ордовик-силур); 18 — континентальный склон, глубоководный бассейн: глубоководные терригенные, кремнисто-терригенные, в том числе конденсированные формации (силур-средний карбон); 19 — глубоководный бассейн: терригенные континентальные разноглубинные бассейны с проявлениями рифтогенеза: метавулкногенная, метавулканогенно-карбонатно-кремнистая, доломитомолассовые формации (карбон-пермь); 26-31 — южная окраина: 26 — шельф пассивной окраины: мелководные терригенные (венд-нижний силур) и ные офиолитовые комплексы с сопровождающими их образованиями островных дуг и задуговых бассейнов: габбро-перидотиты, натровые базальты, карбон-пермы); 22-31 — Каракумо-Таджикский микроконтинент: 22-25 — северная окраина; 22-23 — шельф пассивной окраины микроконтинента: карбонатных формаций (верхний силур-девон); 24-25 — активная окраина микроконтинента: 24 — субокеанический рифт: вулканогенные формации девон); 14 — предгорная ступень микроконтинента: молассовая и шлировая формации (средний-верхний девон); 15 — вулкано-плутонический пояс средний девон); 13 — субконтинентальный рифт: щелочные пиллоу-базальты, кремнисто-карбонатная формация, железные руды (нижний-средний ные и флишевые формации (карбон-пермы); 21 — тыловой прогиб: олистостромовая, флишевая, шельфовая терригенная и молассовая формации чехол микроконтинента (фанерозой), 39 — офиолитовые комплексы Мезотетиса (триас-юра); 40—42 — Каракорумский, Гельменд-Аргандабский и карбонатные (верхний силур-девон) формации; 27—31 — активная окраина микроконтинента: 27—28 — субокеанический рифт: 27 — офиолитовый 22- комплекс терригенных ,шлировых и терригенно-вулканогенных рифтовых формаций (кембрий?-нижний силур); 23- комплекс мелководных ского микроконтинента: 32 — осадочный чехол микроконтинента: преимущественно осадочные терригенные и карбонатные формации(палеозой), Фарахрудский микроконтиненты: 40— осадочный чехол микроконтинентов — осадочные формации (палеозой-юра); 41 — офиолитовый комплекс

Тримечание. Латеральные ряды разновозрастных геодинамических подразделений отображены на рис. 4, где порядковый номер структуры обозначен цифрой в кружке.

гонические окна; 52 — клиппены.

погребенные сутуры палеоокеанических бассейнов, 3 — офиолитовые комплексы и сопровождающие их энсиматические островные дуги в корневых зонах **Рис. 5.** Латеральные последовательности палеозойских геодинамических структур Тянь-Шаня и Памира: 1- сутуры палеоокеанических бассейнов, 2-

нентальный склон и подножье, 7—9 — активные окраины андийского типа (7 — магматические дуги и магматические ареалы горячих точек (?), 8 — субокел аспидные формации, 13 — среднепалеозойские формации карбонатных платформ, 14 — олистостромы, сопровождающие фронтальные части надвигов, $^{6}-$ покровы, клиппены, $^{1}6-$ тектонические окна, $^{1}7-$ фронтальный проги $^{6}), ^{1}8-$ Гиссаро-Восточноалайский надвиговый пояс - покровы ранне-средцированного чехла микроконтинентов, 37- субокеанические окна в консолидированном фундаменте микроконтинентов, 32- микроконтинент Центральи покровах, 4- островные дуги и междуговые глубоководные прогибы, 5- глубоководные прогибы с конденсированным осадконакоплением, 6- контитинент; 12—16 — Букантау-Кокшаальский надвиговый пояс — чехол Алайского микроконтинента (12 — раннепалеозойские, преимущественно флишевые непалеозойских формаций шельфа Каракумо-Таджикского микроконтинента, 19 — граница между Букантау-Кокшаальским и Гиссаро-Восточноалайским морфические купола, 24 — рифты, 25 — рифты-авлакогены, 26 — тектонические уступы, 27 — проявления позднепалеозойского магматизма в осадочном чехле, 28 — осадочный чехол Афгано-Таджикского микроконтинента, 29 — чехол Устортского микроконтинента, 30 — мощность палеозойского стратифианические рифты, 9 — пояс тыловых прогибов), 10 — Кокчетав-Северо-Тяньшаньский микроконтинент, 11 — Улутау-Срединно-Тянь-Шаньский микроконшельфа Таримского микроконтинента, 21—28 — Каракумо-Таджикский микроконтинент: 21 — выступы цоколя (кристаллический фундамент), 23 — метаного Памира, 33—34 — микроконтинент Каракорума-Южного Памира (33 — цоколь, 34 — осадочный чехол), 35 — гранитоидные интрузии (без расчленескладчатыми поясами разделяет структуры Азиатского палеокеана и Палеотетиса, 20 — Таримский микроконтинент, 22 — внешняя складчатая зона ния), 36- надвиги, поддвиги (субдукция типа A), 37- альпийские надвиги, 38- сбросы, 39- сдвиги, 40- скважины, вскрывшие палеозой, 41порядковый номер структурных подразделений

и 5 — Бельтауский ареалы позднепалеозойского магматизма (горячие точки?) в пределах окраины андийского типа; пояс позднепалеозойских ского микроконтинента; 31-33- андийского типа окраины Зеравшанского палеобассейна и Палеотетиса (31- Гиссаро-Хивинская магматическая рынская, 40 — Каракумская микроплиты; рифты — авлакогены: 41 — Бухарский, 42 — Приамударынский, 43 — Хива-Мургабский, 44 — южная плита; 48 — Судочий субокеанический прогиб; 49 — микроконтинент Центрального Памира; 50 — Сутура Мезотетиса; 51—52 — микроконтинент Герскейского палеоокеанического бассейна; 3 — ранне-среднепалеозойский чехол Срединно-Тянь-Шаньского микроконтинента; 4 — Кураминский -о палеоокеанического бассейна; 11-20- Букантау-Кокшаальский складчатый пояс: 11-16- обдуцированные покровы океанической коры гальная рифтовые системы); 34 — цоколь Афгано-Таджикского микроконтинента); 35 — континентальный склон и подножье северной окраины Талеотетиса, 36 — сутура Палеотетиса; 37—46 — Каракумо-Таджикский микроконтинент (37 — Афгано-Таджикская, 38 — Байсунская, 39 — Амудагыловых прогибов (6- Восточно-Аральского, 7- Северо-Букантауского, 8- Карачатырского, 9- Джамандаванского), 10- сутура Туркестансковайские, 16— южной ветви Уральского палеобассейна); 17—20 — покровы чехла Алайского микроконтинента (17— Кызылкумские, 18 — Туркестанские, *19 —* Алайские, *20 —* Кокшаальские); 21 — Сулутерекский массив Таримского микроконтинента; 22 — складчатая зона Таримского шельфа; -иссаро-Восточно-Алайский складчатый пояс: 25 — погребенная сутура Заравшанского океанического бассейна; 25—29 — покровы и окна океанической коры (26 — Ягнобский, 27 — Китармайский, 28 — Вашанский, 29 — Калмаксуйский); 30 — покровы шельфовых формаций Афгано-Таджикдуга, *32 —* Южно-Гиссарский (Каратагский) субокеанический рифт, *33 —* Калайхумб-Сауксайская субокеаническая и Дарваз-Заалайская континен-Донецко-Туаркырской рифтовой системы; 45- Ассакеауданский прогиб, 46- Центрально-Устюртский вал); 47- Северо-Устюртская микро-(аракорума-Южного Памира (51 — цоколь, 52 — осадочный чехол); 53 — Вахшский надвиг, 54 — Илякский сдвиг; 55 — Копетдагский взброс-надвиг; *Тримечание.* Цифры в кружках обозначают порядковый номер структур: 1 — Улутау-Северо-Тянь-Шаньский микроконтинент; 2 — сутура Киргизско-Гуркестанского палеобассейна (11 — Майлисуйский, 12 — Ошские, Киргизатинские, 13 — Южноферганские, 14 — Марджерумский, 15 — Султану-23 — фронтальный прогиб между встречными покровами; 24 — осевая зона сопряжения складчатых поясов с южной и северной виргацией; 25—30 — Копетдагский субокеанический бассейн Палеотетиса Таким образом, в меридиональном сечении в Средней Азии следует выделять с севера на юг Срединно-Тянь-Шаньский микроконтинент, Туркестанский палеоокеанический бассейн, Алайский микроконтинент, Северный (Зеравшанский) Палеотетис, Афгано-Таджикский микроконтинент и Южный (Памирский) Палеотетис.

Урало-Туркестанская ветвь Азиатского палеоокеана и его окружение представлено структурами океанического ряда, сосредоточенных в сутуре и покровах. На территории Средней Азии океан устанавливается по сутуре, прослеженной от Букантау и Северного Нуратау, по северным предгорьям Туркестано-Алайских сооружений до Баубашатинского горного узла включительно. После Таласо-Ферганского сдвига цепь офиолитов протягивается в Кокшаал и далее вдоль Таримского и Северо-Китайского микроконтинентов в Монголию [1; 2; 5; 6]. К северу расположена Бельтау-Кураминская магматическая дуга, насаженная на край Киргизско-Казахского микроконтинента. Распределение калия в эффузивах девона, соответствующих активной окраине Туркестанского палеобассейна, указывает на направление субдукции под Кураминский массив [6]. Между ними протягивается пояс тыловых позднепалеозойских прогибов. К югу от сутуры расположен Букантау-Кокшаальский надвиговый пояс, формации которого полностью накрывают основание Алайского микроконтинента (рис. 6).

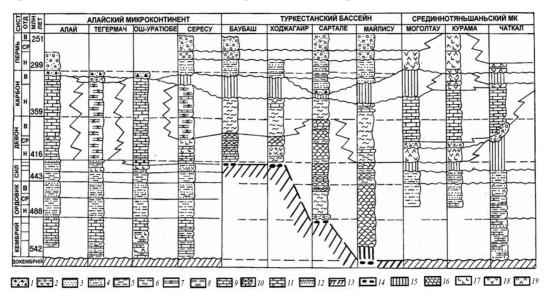


Рис. 6. Типовые разрезы Туркестанского палеоокеанического бассейна и его окраин:

1 — флиш, 2 — моласса, 3 — песчаники, 4 — алевролиты, 5 — аргиллиты, сланцы, 6 — глубоководные сланцы, 7 — кремнистые сланцы, 8 — карбонатные сланцы, 9 — известняки, 10 — рифы,

11 — доломиты, 12 — докембрийский кристаллический фундамент, 13 — мантия, 14 — фрагменты мантийных пород, 15 — стратиграфический перерыв, 16 — пиллоу-базальты океанической коры,

16—19 — эффузивы (17 — основные, 18 — средние, 19 — кислые)

Таким образом, в геодинамическом развитии Туркестанского палеоокеанического бассейна устанавливается четкая последовательность и зональность структур начального рифтогенеза, океанического спрединга, островных дуг, задугового субокеанического бассейна и финальной коллизии.

Герцинские складчатые сооружения Палеотетиса на западе занимают пространство между Африканской и Восточно-Европейской платформами. На юге к ним относятся герциниды Северо-Западной Африки, юга Апеннинского полуострова (Сицилия), Северной Анатолии, Кавказа. Северная цепь герцинид, включающая офиолитовые комплексы, расположена к югу от Русской платформы. На крайнем западе они входят в состав герцинид Центральной и Западной Европы и частично перекрыты чехлом молодой Западно-Европейской платформы. Далее к югу от Ростовского выступа Русской платформы они продолжаются под чехлом молодой Скифской платформы. В Крыму и в Северном Предкавказье бурением вскрыты зеленосланцевые, офиолитовые формации. Они известны также в ядерной части Большого Кавказа. Герциниды Палеотетиса, располагаясь между Русской и Африканской платформами, прослеживаются от Атлантики до Каспийского моря. Далее, в Средней Азии, их сменяют герциниды Южного Тянь-Шаня и Северного Памира [6; 7].

Продолжением европейских герцинид являются структуры Карабогазского выступа и Южного Мангышлака. Их продолжение на востоке — Каракумский и Афгано-Таджикский микроконтиненты. Южная цепь герцинид прослеживается к северу от Эльбурса. Осевая часть океанического бассейна, вероятно, скрыта в недрах Копетдага, где фиксируются интенсивные гравитационные и магнитные аномалии. Выходы офиолитов обнаружены южнее, в Реште, на южном побережье Каспия и в Биналуде [8]. Их продолжают фрагменты офиолитовых серий, обнажающихся вдоль Герирудского разлома в Афганистане. Складчатые цепи Паропамиза являются герцинскими, простираются в Западный Бадахшан и Северный Памир и далее сменяются поднятиями Куньлуня и Циньлиня.

Таким образом, Палеотетис в составе цепей герцинид прослеживается от Атлантики до Памира и Куньлуня и далее через складчатые сооружения Индо-Китая выходит к Тихому океану.

Палеотетис представляют две системы океанических бассейнов, разделенных микроконтинентами и островными дугами. В Средней Азии к их числу относятся герцинские складчатые системы Северного (Зеравшанского) и Южного (Памирского) Палеотетиса [3; 6].

Северной границей Палеотетиса следует считать Зеравшанский бассейн (рис. 7). Он разделял Алайский и Каракумо-Таджикский микроконтиненты.

Бассейн характеризовался активным спредингом в раннем и среднем палеозое. Начиная с карбона, кора Зеравшанского палеоокеана субдуцировала на юг под Афгано-Таджикский микроконтинент, что обусловило раскрытие Южно-Гиссарского рифтогенного субокеанического бассейна, который закрылся в ходе финальной коллизии Зеравшанского океана. В период позднепалеозойской коллизии на краю микроконтинента сформировался Гиссаро-Хивинский вулкано-плутонический пояс. Можно предполагать, что сутура бассейна сопровождает Центрально-Устюртское поднятие и трассируется далее в Предкавказье и Южную Европу в составе северной ветви герцинид.

Зеравшанский палеобассейн представлял собой крупную региональную структуру, развивавшуюся одновременно с Палеотуркестанским. Косвенным подтверждением ширины бассейна является обособление двух, диаметрально противопо-

ложных по составу биоты биогеографических провинций [4; 6]. Установлено, что ранне-среднепалеозойские комплексы бентоса Срединного Тянь-Шаня и северной части Южного Тянь-Шаня (Букантау, Туркестанский хребет, Северный Алай и др.) отличаются от биоценотических сообществ, обнаруженных в разрезах Кульджуктау, Зирабулак-Зиаэтдине, Зеравшанского и Гиссарского хребтов. Первый комплекс связан с Палеоазиатским океаном, второй — с Палеотетисом. Их разделял Зерафшанский палеоокеанический бассейн. Аналогичные различия обнаружены в составе экосистем позднего палеозоя между Северным и Южным Памиром, разделенных южной ветвью Палеотетиса.

СИСТ	ОТД	млн лет	АФГАНО-ТАДЖИКСКИЙ МИКРОКОНТИНЕНТ					ЗЕРАВШАНСКИЙ БАССЕЙН			АЛАЙСКИЙ МК	
2	이	25	ФАНГАРТ	ВАХШИВАР	КАРАТАГ	СИОМИН	ЧАКЫЛКАЛЯН	ягноб	КИТАРМАЙ	ВАШАН	ЧИМКАРТАУ	ЗААМИН .
TEPMB	B CP	251			0.00							
	н	299	, , , , , , , , , , , , , , , , , , ,		$\hat{\hat{A}}$		o o o o o o o o o o o o o o o o o o o			0.0.0		
АРБОН	н			(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>					
EBOH	B CP H	416	77/77/77		7777777			NA HAM	*			
СИЛ		443										
ОРДОВИК	B P H	488				200 200 200 200 200 200 200 200 200 200		(X)(X)				
КЕМБРИЙ		542				<u> </u>						
докембрий ////////////////////////////////////									7777777	777777777		

Рис. 7. Типовые разрезы Зеравшанского палеоокеанического бассейна и его окраин

Примечание. Условные обозначения см. на рис. 6.

Схождение Киргизо-Казахского и Афгано-Таджикского микроконтинентов предопределило не только закрытие Туркестанского и Зеравшанского палеоокеанов, но и способствовало формированию покровно-складчатой системы Южного Тянь-Шаня, которая состояла из Букантау-Кокшаальского и Гиссаро-Восточно-Алайского надвиговых поясов, полностью перекрывших Алайский микроконтинент.

Пограничной структурой, разделявшей системы бассейнов Палеоазиатского океана и Палеотетиса являлись Алайский и Таримский микроконтиненты, а на позднепалеозойском этапе — зона сопряжения движущихся навстречу друг другу Букантау-Кокшаальского и Гиссаро-Восточно-Алайского надвиговых поясов. Между ними по оси Алайского и Таримского микроконтинентов, вероятно, следует проводить границу между системами бассейнов Палеоазиатского океана и Палеотетиса. Не случайно, что между сходящимися надвиговыми поясами прослеживается цепь прогибов, выполненных позднепалеозойской молассой. В некоторых местах прогибы полностью перекрыты встречными покровами.

К югу от северной ветви бассейнов Палеотетиса располагались микроконтиненты — отторженцы Гондваны (Тиашуихайский в Куньлуне, Афгано-Таджик-

ский, Амударьинский, Каракумский и Карабогазский в Средней Азии). Основной ствол Палеотетиса располагался южнее и был представлен бассейнами Западного Куньлуня и Северного Памира [1; 6; 10].

В поперечном сечении Южного (Памирского) Палеотетиса латеральная последовательность разрезов представлена сменой собственно океанических отложений образованиями островной дуги и далее задугового субокеанического спрединга (рис. 8).

Сутуры южного Тетиса прослеживаются по югу Каспия (Решт) и продолжаются в зоне сопряжения Копетдага с Эльбурсом (Мешхед, Ахдарбандское окно). Косвенным подтверждением ветви Палеотетиса являются гипербазиты Туаркыра.

СИСТ	ОТД	МЛН ЛЕТ		ПАЛЕОТЕТИС		ДЖАВАЙ-	БЕЛЕУЛИНСК	СУБОКЕАНИЧЕСКИЙ РИФТ		
			ИШИЙ	музкол	ВАНЧ	ЗУЛУМАРГ	КАРАДЖИЛ	АЮДЖИЛ		КАЛАЙХУМБ
ПЕРМЬ	В СР Н	251 289								
КАРБОН	В	359								
кембрий ордовик силур д	B CP H	416			77777					77777

Рис. 8. Типовые разрезы Памирского бассейна и его северной окраины

Примечание. Условные обозначения см. на рис. 5.

Таким образом, от Куньлуня до Каспийского моря непрерывно прослеживается сутура Южного Палеотетиса, закрывшегося в конце перми — триасе. Субдукция океанической литосферы происходила в северных румбах. На это указывают сопряженный с сутурой пояс гранитоидного магматизма и сменяющий его на севере пояс рифтогенных прогибов. Вулкано-плутоническая дуга, наложенная на складчатые сооружения Куньлуня, обозначена батолитовыми интрузиями перми и триаса. Их продолжением в Северном Памире является триасовый Каракульский гранитоидный комплекс. Далее к западу интрузивные серии прослеживаются в Западном Гиндукуше, Паропамизе, вплоть до Биналуда. В Кубадаге на берегу Каспийского моря известны выходы молодых гранитов. Их продолжением, возможно, являются граниты и вулканиты, вскрытые скважинами в районе г. Баку.

Второй элемент активной окраины Палеотетиса — пояс позднепермских и триасовых рифтогенных (вулканогенных) прогибов, расположенных к северу от складчатой системы Палеотетиса. Он непрерывно прослеживается от Северного Памира, Дарваза и Заалая, по югу Северо-Афганского выступа к северу от Герирудского шва. Его продолжение установлено в Северном Предкавказье и Степном Крыму.

Субдукция Южного Палеотетиса под Афгано-Таджикский континент сопровождалась растяжением окраины, что привело к возникновению Калайхумб-Сауксайской субокеанической рифтовой системы. Последующая позднепалеозойская коллизия завершила образование складчатой системы. Северо-Памирский микроконтинент подвергся тектонической активизации, с которой связано возникновение рифтов и вулкано-плутонических депрессий.

Туркестанский и Зеравшанский, как и Памирский бассейны, с полным основанием следует относить к числу бассейнов океанического ряда. В их пределах установлены офиолитовые комплексы, соответствующие зонам спрединга. На разных этапах развития они сопрягались с примыкавшими к ним микроконтинентами через пассивные и активные окраины. Направление зон субдукции устанавливается по положению энсиматических и энсиалических островных дуг и сопряженных с ними задуговых рифтовых субокенических впадин. Важным фактором является положение парных метаморфических поясов, включающих проявления высокобарического, низкотемпературного метаморфизма с низкобарическим, высокотемпературным [6].

Развитие океанических бассейнов Средней Азии завершилось в позднем карбоне — ранней перьми финальной коллизией структур с сопровождающим ее массовым коровым гранитоидным магматизмом. Общий ход эволюции океанических бассейнов отображен на рис. 9.

Длительная история бассейнов Палеоазиатского океана и Палеотетиса завершилась к концу палеозоя формированием покровно-складчатых, коллизионных систем, спаявших воедино Восточно-Европейский, Сибирский и Таримский континенты и размещенные между ними микроконтиненты, вошедшие в состав Лавразии. Основные тенденции развития океанических бассейнов подчеркиваются, начиная с распада Родинии, рифтогенезом с последующим отделением от Гондваны отдельных континентальных блоков-микроконтинентов, их последующий дрейф на север через Палеотетис и Азиатский палеоокеан и причленение к Балтии и Сибири. Начиная с перми и в мезозое продолжилось наращивание континентальной коры Евразийского континента, путем причленения к нему складчатых систем Мезо- и Неотетиса. Как и в Азии, дрейфующие микроконтиненты отторгались от Гондваны и перемещались в сторону Азии, где формировались соответствующие складчатые зоны, обрамлявшие микроконтиненты. Их развитие проходило аналогично «азиатскому» сценарию, но растянулось вплоть до кайнозоя включительно.

Дрейф континентов в северных румбах и сопутствующее ему поглощение океанической коры, как и субдукция океанических литосферных плит, происходило течение всего фанерозоя. Этот процесс имел глубокие корни, так как субдуцирующие океанические литосферы проникали сквозь мантию, а их холодные тяже-

лые массы скапливались в ее основании. Не случано сейсмотомография фиксирует их в составе Центрально-Азиатского «могильника» («кладбища») литосфер. Палеоазиатские и палеотетические коллизионно-складчатые системы являются поверхностным выражением глобальных процессов — нисходящих конвективных потоков, ответственных за строение складчатых поясов Евразии.

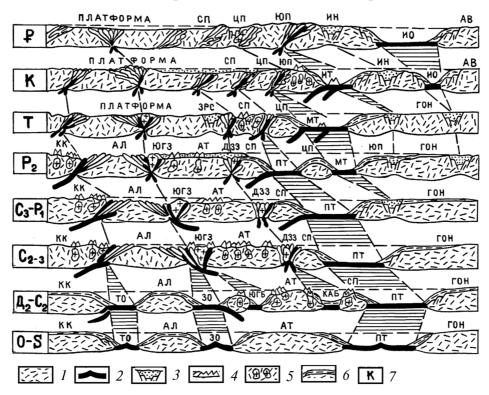


Рис. 9. Эволюция океанических бассейнов Тетиса в фанерозое: О-S — раскрытие Палеотетиса, Туркестанского и Зеравшанского палеоокеанов; μ_2 - μ_2 - μ_2 - μ_3 - μ_4 и Зеравшанского палеоокеанов, рифтогенез и раскрытие Южно-Гиссарского и Калайхумского субокеанических бассейнов; С₂₋₃ — закрытие Туркестанского и Зеравшанского палеоокеанов, формирование коллизионных Букантау-Кокшаальского и Гиссаро-Восточно-Алайского надвиговых поясов, коллизионных Южно-Гиссарской и Дарваз-Заалайской складчатых зон, продолжение развития Палеотетиса; С₃-Р₁ — продолжение коллизионных процессов закрытия океанических бассейнов, коллизионный магматизм; P_2 — начало закрытия Палеотетиса и открытие Мезотетиса, продолжение коллизионных процессов; Т — закрытие Палеотетиса, развитие Мезотетиса, становление Туранской платформы, коллизионные процессы в Центральном и Северном Памире, возникновение Заалай-Дарвазской рифтовой системы, рифтогенез Гондваны — предшественник возникновения Неотетиса (T_3 -J) и Индийского океана (J_3 -K); K — развитие Туранской платформы, коллизия структур Памира, возникновение и развитие Неотетиса (J-K), возникновение и развитие Индийского океана (J-K): Р — развитие Туранской платформы, продолжение коллизионных процессов в Центральном и Южном Памире, закрытие и последующая коллизия структур Неотетиса, формирование платобазальтов Декана (K_2 - P_1), дальнейшее раскрытие Индийского океана. 1 — континентальная кора континентов и микроконтинентов, 2 — океаническая кора, 3 — рифты: 4—5 — магматизм (4 эффузивный, 5 — интрузивный), 6 — осадочный покров, 7 — временные интервалы развития океанических бассейнов. Континенты и микроконтиненты: ГОН — Гондвана, АТ- Афгано-Таджикский, СП — Северо-Памирский, АЛ — Алайский, КК — Киргизо-Казахский, ИН — Индийский, АВ — Австралийский. Океанические бассейны: ПТ — Палеотетис, МТ — Мезотетис, НТ — Неотетис, 30 — Зеравшанский, ТО — Туркестанский. Субокеанические, рифтогенные бассейны: ЮГБ — Южно-Гиссарский, КАБ — Калайхубский. Коллизионные складчатые зоны: ЮГЗ — Южно-Гиссарская, ДЗЗ — Дарваз-Заалайская; ЗРС — Заалайская рифтовая система

Обоснование особенностей минерагенической и металлогенической специализации палеозойских формаций является фундаментальной научной проблемой региональной геологии Средней Азии. В палеозойских формациях сосредоточены основные запасы эндогенных рудных месторождений золота, полиметаллов и др. В их формировании принимали участие первично седиментационные накопления, ремобилизованные в ходе неоднократных проявлений фаз магматизма и метаморфизма. Формации палеозоя содержат также широкий спектр сингенетичных и сингенетично-эпигенетичных осадочных полезных ископаемых. По мере исчерпания возможностей открытия новых месторождений нефти и газа в осадочном мезозойско-кайнозойском осадочном чехле важнейшим объектом нефтегазовой геологии должны стать палеозойские потенциально нефтегазоносные бассейны. Наиболее перспективными могут оказаться осадочные бассейны микроконтинентов. Среди них карбонатные формации среднего девона-нижнего карбона вне пределов позднепалеозойского плюмового магматизма Бельтауского и Кураминского ареалов Срединно-Тянь-Шаньского микроконтинента. Аналогичный стратифицированный разрез характерен для Северо-Устюртского и Каракумо-Таджикского микроконтинентов. Перспективными могут оказаться позднепалеозойские формации Карачатырского тылового прогиба и черносланцевые формации перми Устюрта.

ЛИТЕРАТУРА

- [1] Буртман В.С. Тянь-Шань и Высокая Азия: тектоника и геодинамика в палеозое. М.: Геос, 2006. 215 с.
- [2] Бискэ Ю.С. Палеозойская структура и история Южного Тянь-Шаня. С.-Пб.: Изд-во С.-Петербургского ун-та, 1996. 190 с.
- [3] Далимов Т.Н., Троицкий В.И. Эволюционная геология. Университет, 2005. 587 с.
- [4] *Зубцов С.Е., Зубцов Е.И.* Палеофаунистические данные о двух палеозойских океанах в Южном Тянь-Шане // Докл. РАН. М.: Наука, 1998. Т. 362. № 2. С. 230—232.
- [5] *Мухин П.А., Каримов Х.К., Савчук Ю.С.* Палеозойская геодинамика Кызылкумов. Фан, 1991. 148 с.
- [6] Троицкий В.И. Океанические бассейны и складчатые системы Средней и Высокой Азии (геодинамический анализ), Lambert academic publishing, Gamburg, 2012. 258 с.
- [7] Хаин В.Е. Тектоника континентов и океанов. М.: Научный мир, 2001. 604 с.
- [8] *Ruttner A.W.* Southern borderland of Triassic Laurasia in north-east Iran. Geol. Rundschau, 1993. V. 82. P. 110—120.
- [9] Sengor A.M.C., Natalin B.A. Paleotectonics of Asia fragments of synthesis. The tectonic evolution of Asia. Cambridge (USA): University Press, 1996. P. 486—640.
- [10] Burtman V.S., Tien Shan. Pamir and Tibet: History and geodynamics of Phanerozoic oceanic basins, Geotectonics 44, 2010. P. 388—404.

TAN SHAN — AREA OF PALEOZOIC KOLLISION SYSTEM OF ASIAS PALEOCEAN AND PALEOTETIS OCEAN

V.I. Troitsky

Department of MDF Peoples' Friendship University of Russia Ordzhonikidze str., 3, Moscow, Russia, 117923

Present history and dynamic of Paleozoic system and Asiatic Paleoocean and Paleotetis ocean.

Key words: geodynamical system of orogenic, geodynamical regime of passive and active offshore, formations, lithogeodinamical complex

REFERENCES

- [1] Burtman V.S. Tan Shan and high Asia: tectonic and geodynamic in Paleozoic. M.: Geos, 2006. 215 p. [Burtman V.S. Tan Shan i vysokaya Asia: tectonic i geodynamic v Paleozoic. M.: Geos, 2006. 215 s.]
- [2] Biske Yu.S. Paleozoic structur and history of South Tan Shan. Publ. of S. Peter. Unuvers., 1996. 190 p. [Biske Yu.S. Paleozoic structur and history of South Tan Shan. Publ. of S. Peter. Unuversiteta, 1996. 190 s.]
- [3] Dalimov T.N., Troitsky V.I. Evolution geology. University, 2005. 587 p. [Dalimov T.N., Troitsky V.I. Evolutionnaya geologya. University, 2005. 587 s.]
- [4] Zubtsov C.E., Zubtsov E.M. Paleofaunic data from two ocean in south Tan Shan. Rep. RAS. M.: Nauka, 1998. T. 362. № 2. P. 230—232. [Zubtsov C.E., Zubtsov E.M. Paleofaunistitheskie dannye o paleozojskih okeanah v Yuzhnom Tan Shane. Dokl. PAH. M.: Nauka, 1998. T. 362. № 2. S. 230—232.]
- [5] Muhin P.A., Karimov H.K., Savthuk Yu.C. Paleozoic geodynamic of Kyzylkum. Fan, 1991. 148 p. [Muhin P.A., Karimov H.K., Savthuk Yu.C. Paleozoiskay geodinamica Kyzylkumov. Fan, 1991. 148 s.]
- [6] Troitsky V.I. Oceanic basin and system of Middle and High Asia (geodynamical analisis), Lambert academic publishing, Gamburg, 2012. 258 p. [Troitsky V.I. Oceanic basseiny and scladthatye systemy Sredney and Bysokoj Asii (geodinamithesky analiz), Lambert academic publishing, Gamburg, 2012. 258 s.]
- [7] Hain V.E. Tectonic of continent and ocean. M.: Scientific world, 2001. 604 p. [Hain V.E. Tectonic of continentov and oceanov. M.: Nauthny world, 2001. 604 s.]
- [8] Ruttner A.W. Southern borderland of Triassic Laurasia in north-east Iran. Geol. Rundschau, 1993. V. 82. P. 110—120.
- [9] Sengor A.M.C., Natalin B.A. Paleotectonics of Asia fragments of synthesis. The tectonic evolution of Asia. Cambridge, USA, University Press, 1996. P. 486—640.
- [10] Burtman V.S., Tien Shan. Pamir and Tibet: History and geodynamics of Phanerozoic oceanic basins, Geotectonics 44, 2010. P. 388–404.