Описание спектра водородоподобного атома в квантовой механике с последователь но вероятностной интерпретацией

In the first part of the work, the authors review selected statistical interpretations of nonrelativistic quantum mechanics. Then they discuss a possible version of quantum mechanics admitting a nonnegative quantum distribution function. In this version, the time-independent Schr{ö}dinger equation for a particle in a potential field V(bold{r}) is left[-frac{hbar^{2}}{2m}Delta +introman{d}^{3}{bfrho}, alpha_{0}({bfrho}) V(bold{r}+{bfrho})right] Psi(bold{r})=EPsi(bold{r}), where alpha_{0}({bfrho})geq0. par In the second part of the work, the authors consider this modified Schr{ö}dinger equation in the Coulomb case, i.e., for V(bold{r})=-Ze^{2}/|bold{r}|. On applying Kato's perturbation theory for selfadjoint operators, some estimates for the discrete part of a spectrum of the modified Schr{ö}dinger eigenproblem are provided.

Authors
Zhidkov E.P. , Zorin A.V.
Editors
Szmytkowski Radosław
Publisher
Obʺed. Inst. Yadernykh Issled., Dubna
Language
English, Russian
Status
Published
Year
2000
Share

Other records

Arutyunov Aram V., Dmitruk Andrei V.
Kluwer Academic Publishers, Dordrecht. 2000.