Aura 1

Стороженко Ольга Анатольевна

Домино-реакции цианометильных производных в синтезе хроменов, аннелированных с имидазопиридиновым или изохинолиновым фрагментами

(02.00.03-органическая химия)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Москва

Работа выполнена кафедре органической химии факультета физикона математических и естественных наук Федерального государственного автономного образовательного учреждения высшего профессионального образования «Российский университет дружбы народов»

Научный руководитель:

Воскресенский Леонид Геннадьевич доктор химических наук, профессор РАН

Официальные оппоненты:

Анаников Валентин Павлович член-корреспондент РАН доктор химических наук, профессор ФГБУН Институт органической химии им. Зелинского Российской академии наук

Белоглазкина Елена Кимовна

Brown!

Доктор химических наук, профессор кафедры органической химии Химического ФГОУ факультета BO Московский государственный университет им. Ломоносова

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный нефтяной технический университет» (УГНТУ)

Защита диссертации состоится «21» мая 2019 г. в 15 час. 30 мин. на заседании Совета по защите докторских и кандидатских диссертаций Д 212.203.11 при Российском университете дружбы народов по адресу: 117923, Москва, ул. Орджоникидзе, д. 3, зал №2.

C можно ознакомиться в Учебно-научном диссертацией информационном библиографическом центре Российского университета дружбы народов по адресу: 117198, Москва, ул. Миклухо-Маклая, д. 6.

Автореферат разослан « »_____2019 года.

Ученый секретарь диссертационного совета кандидат химических наук, доцент

В. В. Курилкин

Общая характеристика работы

Актуальность темы. Домино-реакции, в том числе мультикомпонентные, позволяют осуществлять эффективный синтез органических соединений, экономя время, растворители и сорбенты, необходимые для выделения промежуточных веществ. Такие процессы широко используются для получения природных соединений и их аналогов, веществ, обладающих полезной биологической активностью или ценными физическими свойствами, а создание новых домино- и мультикомпонентных реакций является актуальным направлением исследований. В настоящей работе изучаются реакции о-гидроксибензальдегидов с различными цианометильными производными, приводящие к образованию нескольких гетероциклических колец в одну синтетическую стадию. Получаемые соединения имеют несколько фармакофорных групп — 2-аминохроменовый и имидазо[1,2-а]пиридиновый циклы, или флуорофорный изохинолинаминовый фрагмент, что делает интересным изучение их свойств. Работа выполнена в соответствии с планом НИР Российского университета дружбы народов и поддержана грантом РФФИ 18-33-00536.

Цели и задачи работы состояли в следующем:

- 1) Изучить домино-взаимодействие N-цианометильных солей изомерных азаиндолов и тиенопиридинов с o-гидроксибензальдегидами.
- 2) Разработать подход к синтезу 12-замещенных хроменоимидазопиридинов на основе последовательной трехкомпонентной реакции *N*-цианометильных пиридиниевых солей, *о*-гидроксибензальдегидов и различных нуклеофилов.
- 3) Оценить возможность использования гомофталонитрила в качестве винилога малононитрила в мультикомпонентных реакциях, изучить трехкомпонентные превращения гомофталонитрила с *о*-гидроксибензальдегидами и нитрометаном.

Научная новизна работы.

Все полученные в рамках диссертационного исследования результаты являются новыми и не имеют аналогов в литературе. Впервые получены хроменоимидазолы, конденсированные с изомерными тиенопиридиновым или пирролопиридиновым кольцами, в TOM числе. включающие гетероциклический скелет природного соединения изогранулатимида С. Разработан подход к введению заместителя в положение С(12) хроменоимидазопиридиновой основе новой последовательной системы на трехкомпонентной реакции с окислительным шагом. Показано, что гомофталонитрил может рассматриваться как винилог малононитрила и использоваться в мультикомпонентных реакциях с о-гидроксибензальдегидом и нуклеофилом для аннелирования изохинолинового цикла к хроменовому.

<u>Практическая значимость работы.</u> Синтезирован ряд новых полигетероциклических соединений, содержащих востребованные медицинской химией

фармакофорные фрагменты 2-аминохромена и имидазо[1,2-*а*]пиридина. Среди них обнаружены вещества с ярко выраженной цитотоксической активностью по отношению к раковым клеткам HEP-G2 и КВ. Ряд хроменоизохинолинаминов с индольным заместителем при С(12) обладает флуоресцентными свойствами (квантовые выходы 40-71%). При этом обнаружено полное обратимое гашение флуоресценции в кислой среде.

Апробация работы. Результаты работы докладывались на Зимней конференции молодых ученых по органической химии (16 – 21 января 2016 г, Красновидово, Россия), І Всероссийской молодежной школе-конференции "Успехи синтеза и комплексообразования" (Москва, 25 – 28 апреля 2016 г), Dombay organic conference cluster DOCC-2016 (Домбай, 29 мая – 04 июня 2016), The Fourth International Scientific Conference "Advances in Synthesis and Complexing" (Москва, 24 – 28 апреля 2017), Всероссийской научной конференции с международным участием «Современные проблемы органической химии», посвященной 110-летию со дня рождения академика Николая Николаевича Ворожцова (Новосибирск, 5 – 9 июня 2017 г), 26th International Society of Heterocyclic Compounds Congress (Регенсбург, Германия, 03 – 08 Сентября 2017), XII International Scientific Conference of postgraduates, masters and young researchers on "ACTUAL PROBLEMS OF CHEMİSTRY" dedicated to 95th anniversary of National Lider HEYDAR ALIYEV (Баку, Азербайджан, 3 – 4 мая 2018), II Всероссийской школе-конференции, посвященной 100-летию Иркутского государственного университета и 85-летию химического факультета ИГУ (24 – 28 сентября 2018 г, Иркутск).

<u>Публикации</u>: По теме диссертации опубликовано 5 статей в реферируемых журналах и 7 тезисов докладов на конференциях.

Объем и структура диссертации. Диссертационная работа изложена на 171 странице машинописного текста и состоит из введения, обзора литературных данных, обсуждения полученных результатов, экспериментальной части, выводов и списка цитируемой литературы, включающего 122 наименования; содержит 133 схемы, 8 таблиц и 9 рисунков.

Основное содержание работы

1. Превращения *N*-цианометильных солей изомерных азаиндолов и тиенопиридинов с *о*-гидроксибензальдегидами

Ранее на кафедре органической химии РУДН был разработан подход к синтезу хроменоимидазоизохинолинов I на основе домино-реакции N-(цианометил)изохинолиния с o-гидроксибензальдегидами (Схема 1.1).

Схема 1.1

Было интересным изучить аналогичные превращения четвертичных цианометильных солей азаиндолов и тиенопиридинов.

Для этого из соответствующих азаиндолов нами были получены необходимые четвертичные соли **1a,b**, **2a,b**, **3** и **4** кипячением с хлор- или бромацетонитрилом в ацетонитриле или при микроволновом облучении для соединения **2a** (Схема 1.2) с высокими выходами.

Схема 1.2

* реакция проводилась при микроволновом облучении при 140°C, в течении 30 минут, в закрытом сосуде

В качестве модельной реакции для подбора условий нами было выбрано взаимодействие соли **1a** с салициловым альдегидом. В результате было установлено, что использование 2-х экв. ацетата аммония в качестве основания при кипячении в этаноле в течение 3 часов оказалось наиболее эффективным. Далее нами были изучены границы применимости реакции, для чего использовались различные *о*-гидроксибензальдегиды, и был получен ряд соответствующих хроменоимидазопирролопиридинов **5a-d** и **6a-c** с выходами 24-57% (Схема 1.3). В процессе реакции продукты выпадали в осадок из реакционных

смесей и по окончании выделялись фильтрованием, промывание осадка этиловым спиртом в итоге давало чистые целевые соединения.

Схема 1.3

Полученные соединения были охарактеризованы спектрами ЯМР на ядрах ¹Н и ¹³С, данными ИК-спектроскопии и масс-спектрометрии. Структура соединения **5а** достоверно установлена методом РСА (Рисунок 1.1).

Рисунок 1.1. Общий вид молекулы 5а в кристалле.

Предполагаемый механизм включает конденсацию Кневенагеля салицилового альдегида и четвертичной соли с последующей атакой фенолят-аниона по нитрилу и образованием иминиевого производного **B**, циклизация которого по пиридиновому кольцу и ароматизация имидазольного кольца завершают последовательность (Схема 1.3).

Схема 1.3

Взаимодействие соли 7-азаиндола **2a** с *о*-гидроксибензальдегидами в смеси МеОН-Н₂О в присутствии ацетата аммония не привело к желаемым хроменоимидазопирролопиридинам **7**, результатом реакции оказались кумарил-производные **8a-c** (Схема 1.4), выделенные методом колоночной хроматографии. В спектрах ЯМР ¹Н соединений **8** отсутствовал характеристичный синглет метиленовой группы в области 4 м.д. и интегральной интенсивностью в 2H. Структура соединения **8a** подтверждена с помощью корреляционных ЯМР экспериментов: COSY, HSQC, HMBC, HMBC-LR, NOESY (Рисунок 1.2). Наличие кумаринового фрагмента также подтверждается данными масс-спектрометрии: масса молекулярного иона соответствует предложенной структуре.

Схема 1.4

Рисунок 1.2. Характеристичные корреляционные взаимодействия в 2D ЯМР спектрах соединения **8a**.

Во избежание депротонирования соли **2a** и образования ангидро-оснований и для протекания реакции по желаемому нам пути, приводящему к продуктам внутримолекулярной циклизации, вместо соли **2a** в реакции было решено использовать цианометильную соль 1-метил-7-азаиндола **2b**.

Взаимодействие соли **2b** с различными *о*-гидроксибензальдегидами в аналогичных условиях не привело к ожидаемому результату. Получить пентациклические производные не удалось, а продуктами реакции оказались кумарил-производные **9a-d** (Схема 1.5).

100 мол. %
$$NH_4OAc$$
 Ме $OH-H_2O$ кипячение, 3 ч $R=Me, X=Br$ R^5 R^3 $R=Me, X=Br$ R^5 R^5

В стремлении избежать процессов гидролиза были предприняты попытки проведения реакции в безводных условиях, в атмосфере аргона и в присутствии осущающих агентов, таких как молекулярные сита, безводный сульфат магния и безводный сульфат меди. В качестве растворителей использовались абсолютные метанол, этанол, изопропиловый спирт и ДМФА, а в качестве оснований – карбонат натрия, ацетат аммония и DBU. Тем не менее, даже в таких условиях были получены продукты гидролиза 9. Вероятно, воды, которая выделяется в результате конденсации Кнёвенагеля, оказывается достаточно для его протекания. Однако, проведение реакции при микроволновом облучении при температуре 150 °C в абсолютном этаноле с молекулярными ситами и безводным карбонатом калия в течение 10 минут в итоге привело к желаемым продуктам циклизации 10а-с с умеренными выходами (Схема 1.6). Невысокие выходы могут быть связаны с нестабильностью интермедиатов в условиях реакции, и уменьшение времени процесса при микроволновой активации может объяснить успешность данного подхода.

Схема 1.6

Оптимальные условия были использованы для осуществления аналогичных превращений солей 4- и 5-азаиндолов **3** и **4**. В результате были получены имидазопирролопиридины **11a-е** с выходом 70-87% и **12a-d** с выходом 44-57% (Схема 1.7). Образование соединений **11** оказалось не столь чувствительным к условиям реакции и к присутствию воды, так, например, продукт **11a** был получен с выходом 64% после 8 часов кипячения в смеси метанол-вода в присутствии ацетата аммония.

Структуры полученных соединений были подтверждены комплексом физикохимических методов, в том числе набором 2D ЯМР экспериментальных данных: COSY, HSQC, HMBC и NOESY.

Таким образом, нами была изучена домино реакция 4-, 5-, 6- и 7-азаиндолов с o-гидроксибензальдегидами в присутствие основания и было показано, что во всех случаях, за исключением соли незамещенного по N-1 7-азаиндола, происходит образование соответствующих хроменоимидазопирролопиридинов с выходами от умеренных до высоких.

2. Четвертичные N-цианометильные соли изомерных тиенопиридинов в домино реакции с o-гидроксибензальдегидами

Было интересным изучить аналогичные превращения *N*-цианометильных четвертичных солей тиенопиридинового ряда. Для этого исходные тиенопиридины, полученные по описанным методикам, превращали в соли действием хлорацетонитрила в ацетонитиле при кипячении в течение нескольких часов с высокими выходами (Схема 2.1).

Схема 2.1

Подбор условий проведения реакции соли **13** с салициловым альдегидом показал, что превращение протекает наиболее эффективно при использовании 2-х экв. NH₄OAc в

качестве основания и смеси метанол-вода (1-2) в качестве растворителя при кипячении в течение 3 часов и дает выход желаемого продукта 84%. В реакции были опробованы различные *о*-гидроксибензальдегиды и был получен ряд соответствующих хроменоимидазотиенопиридинов **17а-g** (Схема 2.2). Во всех случаях целевые продукты выпадали в осадок в процессе реакции и выделялись фильтрованием.

Схема 2.2

Продуктами реакции соли **14** с различными *о*-гидроксибензальдегидами стали пентациклические хроменоимидазотиенопиридины **18a-d** (Схема 2.3).

Схема 2.3

Взаимодействие соли **15** с рядом *о*-гидроксибензальдегидов в присутствии двукратного избытка ацетата аммония в водно-метанольной среде привело к образованию хроменоимидазотиенопиридинов **19a-f** с высокими выходами (Схема 2.4).

Схема 2.4

Структура соединения **19а** дополнительно подтверждена с помощью метода РСА (Рисунок 2.1).

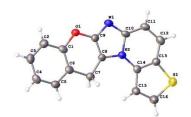


Рисунок 2.1. Общий вид молекулы 19а в кристалле.

Реакция соли изомерного тиено[2,3-*c*]пиридина **16** с серией *о*-гидроксибензальдегидов в аналогичных условиях также привела к пентациклическим хроменоимидазотиенопиридинам **20a-i** с высокими выходами (Схема 2.5).

Схема 2.5

Для ряда соединений были получены данные об антипролиферативной активности по отношению к HepG2 (клетки гепатоцеллюлярной карциномы человека) и KB (клетки карциномы полости рта) Таблица 2.1.

Таблица 2.1. Результаты исследования антипролиферативной активности.

№ соединения	IC ₅₀ (μM)		№	IC ₅₀ (μM)		№	IC ₅₀ (μM)	
	KB	HepG2		KB	HepG2		KB	HepG2
5a	12.72	2.21	12c	63.13	77.59	17d	118.07	128
5b	9.0	10.66	12d	7.3	8.7	18a	23.15	32.82
5c	< 0.5	0.65	17a	36.42	53.50	18c	17.68	19.62
11d	3.55	11.02	17b	90.03	82.28	18d	38.47	37.52
12b	11.45	17.52	17c	12.44	8.25	19a	79.18	>128
Элиптицин	0.23	0.31						

3. Четвертичные азиниевые *N*-цианометильные соли, *o*-гидроксибензальдегиды и нуклеофильные агенты в домино реакции с окислительным шагом

Ранее было показано, что в превращениях N-цианометильных солей и салициловых альдегидов в качестве промежуточного соединения образуется 2-иминохромен \mathbf{B} (Схема 3.1). Принимая во внимание способность 2-иминохроменов выступать в качестве акцепторов Михаэля, мы решили расширить круг получаемых хроменоимидазопиридинов за счет нуклеофильного введения в положение C(4) пиранового кольца различных заместителей, с промежуточным образованием 2-аминохромена \mathbf{C} . Циклизация амина \mathbf{D} по пиридиновому кольцу дает \mathbf{E} , для ароматизации которого необходимо применение окислителя.

Схема 3.1

$$_{NuH}$$
 $_{Nu}$ $_{$

Для проверки разработанной концепции мы осуществили взаимодействие между салициловым альдегидом, *N*-(цианометил)пиридиний хлоридом 21 и нитрометаном в качестве нуклеофила в этаноле в присутствии триэтиламина в качестве основания в атмосфере воздуха в последовательном однореакторном режиме. Сначала четвертичную соль перемешивали с салициловым альдегидом в присутствии триэтиламина при 0°C в течение 30 минут, затем к реакционной массе добавляли нитрометан (10 экв.) и смесь кипятили в течение 2-х часов в открытом сосуде. В результате целевой продукт 22а был выделен в следовых количествах в смеси с соединением 23 (Схема 3.2). Нами было обнаружено, что проведение первого шага при охлаждении является обязательным для предотвращения внутримолекулярной циклизации 2-иминохромена 24 и образования продукта 23. Стоит отметить, что превращение соединения 24 в 23 представляет собой постоянную побочную реакцию в присутствии основания, происходящую со временем даже при комнатной процесс. Поскольку кислорода воздуха температуре и усложняющую недостаточно для обеспечения необходимой циклизации, мы приступили к поиску подходящего окислителя и оптимальных условий реакции. Наиболее эффективным оказалось проведение реакции в последовательном режиме с генерированием иминохромена **24** в присутсвтии 0.2 экв. Et_3N в течение 1ч при $0^{\circ}C$ на первом этапе, и использование 10 экв. нитрометана, 3.8 экв. Et₃N и 2 экв. Mn(OAc)₃x2H₂O на втором при кипячении в течение 2 ч.

Также, в результате проведения нескольких контрольных экспериментов было установлено, что образования продукта реакции не происходит без использования основания на втором шаге.

Схема 3.2

Для изучения границ применимости реакции нами были осуществлены превращения с различными *о*-гидроксибензальдегидами в оптимальных условиях, в результате были получены нитрометил-замещенные хроменоимидазопиридины **22a-h** (Схема 3.3).

Схема 3.3

Структуры соединений **22a-h** подтверждены комплексом физико-химических данных. Структура соединения **22a** дополнительно подтверждена комплексом 2D ЯМР экспериментов: COSY, HSQC, HMBC, NOESY.

Введение индольного фрагмента в хроменовое ядро представляет собой актуальную задачу, которая побудила нас исследовать возможность использования этого нуклеофила в обнаруженном процессе. Ранее оптимизированные условия для последовательной реакции хлорида *N*-(цианометил)пиридиния, *о*-гидроксибензальдегида и индола, давали желаемое соединение **25a** с хорошим выходом 77% (Схема 3.4, примечание а), в то время как реакция с *N*-метилиндолом в данных условиях приводила к образованию неразделимой смеси целевого соединения **25b** и продукта двухкомпонентной реакции **23** (Схема 3.4, примечание b), что

указывало на необходимость поиска более общих условий процесса. Для предотвращения образования побочного продукта **23** была предпринята попытка проведения второй стадии при охлаждении, однако в данных условиях (0°С) ацетат марганца оказался неэффективным. Использование КМпО₄ в качестве окислителя хотя и давало **25a** с несколько меньшим выходом (69%), но приводило к *N*-метилиндольному продукту **25b** с выходом 54% при проведении второго шага при 0°С в течение 5 дней (Схема 3.4, примечание с). Дальнейшее исследование границ реакции показало высокий синтетический потенциал превращения – был получен ряд индолил-замещенных продуктов **25i-j** (Схема 3.4).

Схема

3.4

1. 0.2 эквив. Et₃N, 0°C, TFE, 1 ч
2. 3 эквив. индола, 1 эквив. КМпО₄,
0.8 эквив. Et₃N, кипячение, 1ч

21

25a-k

25a,
$$R^1 = R^2 = R^3 = R^4 = R^5 = R^6 = H$$
, 69% (77%)^a
25b, $R^1 = R^2 = R^3 = R^4 = R^6 = H$, $R^5 = Me$, 54% (-%)^b
25c, $R^1 = R^2 = R^3 = R^5 = R^6 = H$, $R^4 = OEt$, 44%
25d, $R^1 = R^3 = R^4 = R^5 = R^6 = H$, $R^2 = OMe$, 70%
25e, $R^1 = R^3 = R^4 = R^5 = R^6 = H$, $R^2 = OMe$, 70%
25e, $R^1 = R^3 = R^4 = R^5 = R^6 = H$, $R^2 = OMe$, 70%
25f, $R^1 = R^3 = R^4 = R^5 = R^6 = H$, $R^2 = OMe$, 70%
25g, $R^1 = R^3 = R^4 = R^5 = R^6 = H$, $R^2 = OMe$, 80%
25g, 80%

^а2 экв Mn(OAc)₃х2H₂O было использовано на 2 шаге; ^ввыделено в виде неразделимой смеси с соединением **23**; ^с вторая стадия проводилась при 0°C в течение 5 дней.

Строение соединений **25а-ј** подтверждено комплексом спектральных данных. Структура соединения **25а** подтверждена с помощью 2D ЯМР экспериментов: COSY, HSQC, HMBC, NOESY.

Для проверки общего характера превращения и, в первую очередь, используемого окислителя в данной реакции нами был исследован широкий круг нуклеофилов (Схема 3.5. Так, реакция с пирролом в качестве нуклеофильного компонента привела к целевому продукту 26а с 43% выходом. Выход же *N*-метилпиррол-замещенного производного 26b составил 23%. Данные реакции проводились при 0°С в течение 5 дней, т.к. при кипячении наблюдалось образование побочного продукта 23. Изомерные 5-,6- и 7-азаиндолы оказались эффективны в описываемом превращении соответствующие продукты 27, 28, 29 были получены с выходами 60, 53 и 49%. В случае использования 3-метокси- и 3,5-диметоксифенолов в спектрах ЯМР продуктов 30, 31 реакции наблюдался удвоенный набор сигналов для продукта реакции с 3-метоксифенолом и четырехкратный набор сигналов для 3,5-диметоксифенола. В спектрах LCMS присутствовали сигналы одного соединения. Вероятно, в данном случае образуется смесь регио-изомеров. Однако, возможно, сигналы

удваиваются за счет появления изомеров вращения относительно связи С-С между фенольным и пирановым циклами. *пара*-Замещенные 4-*трет*-бутил- и 4-изоппропилфенолы давали целевые продукты **32**, **33** однако, со значительно меньшим выходами 14 и 18%, соответственно. Интересно отметить, что такие π-избыточные азагетероциклы как пиразол и бензопиразол претерпевали присоединение по атому азота и давали *N*-производные **34**, **35** с выходами 56 и 37%. Структура соединения **26b** была подтверждена с помощью РСА (Рисунок 3.1).

Рисунок 3.1. Общий вид молекулы 26b в кристалле.

Схема 3.5

Возможность использования СН-кислот была продемонстрирована на диэтилмалонате, что привело к получению ряда хроменоимидазопиридинов **36a-g** (Схема 3.6). Использование избытка малонового эфира осложняло хроматографическое выделение целевых соединений из-за близкой подвижности на сорбенте. В результате небольшой оптимизации условий было установлено, что соединения **36** получаются с максимальным выходом при выдерживании раствора иминохромена **24** с одним эквивалентом малонового

эфира при 0°C в течение 2 дней, с последующим окислением перманганатом калия при комнатной температуре от 1 часа до суток.

Схема 3.6

В дополнение, нами было показано, что в данной реакции могут быть использованы соли 1-метил-6-азаиндола и тиено[2,3-c]пиридина **1a**, **14**. В результате был получен ряд соответствующих производных **37** – **40** (Схема 3.7).

Схема 3.7

4. Гомофталонитрил в синтезе 12H-хромено[2,3-c]изохинолин-5-аминов

Динитрилы широко применяются в органическом синтезе, среди них наиболее изучен малононитрил, который является универсальным компонентом множества мультикомпонентных реакций для получения 2-амино-4*H*-хроменов. Фрагмент винилога малонитрила содержится в гомофталонитриле, который может быть аналогично использован для создания аминоизохинолинового кольца, однако данное превращение до сих пор не было реализовано. Нашей целью стало изучение возможности использования гомофталонитрила в качестве динитрильной компоненты для создания мультикомпонентных реакций получения производных 2-амино-4*H*-хромена.

Так, нами было обнаружено, что кипячение o-гидроксибензальдегида с гомофталонитрилом **41** в спирте в присутствии карбоната натрия протекает как псевдо-

трехкомпонентная реакция, которая приводит к образованию хроменоизохинолинамина 42 с прекрасным выходом (Схема 4.1).

Схема 4.1

Применение нитрометана в качестве третьего компонента позволило бы получить соответствующий хроменоизохинолинамин с нитрометильным заместителем в пирановом кольце **43a** (Схема 4.2). Нами был осуществлен поиск оптимальных условий, приводящих к нитрометил-хроменоизохинолинаминам, и в результате было обнаружено, что наиболее эффективно реакция протекает при последовательном взаимодействии гомофталонитрила **41** с избытком салицилового альдегида в присутствии ацетата аммония в изопропаноле при нагревании до 150°C в микроволновом реакторе в закрытом сосуде, с последующим добавлением нитрометана и триэтиламина и повторном нагреве в течение 10 мин при 150°C.

Использование широкого спектра *о*-гидроксибензальдегидов позволило получить различнозамещенные хроменоизохинолинамины **43a-f** с хорошими выходами (Схема 4.2).

Схема 4.2

Для демонстрации общего характера разработанного подхода далее в качестве нуклеофила нами был использован индол и целевой продукт **44a** был получен с выходом 71% в условиях, приведенных ранее для нитрометана. Эффективными нуклеофилами оказались 6-и 7-азаиндолы, которые давали соответствующие изохинолинамины **44 f,g** с выходами 77 и 69%. Ряд *о*-гидроксибензальдегидов был использован в данном процессе, что привело к соединениям **44 b-е** с высокими выходами (Схема 4.3). Структура соединения **44a** подтверждена методом РСА (Рисунок 4.1).

Рисунок 4.1. Общий вид молекулы 44а в кристалле

Было замечено, что синтезированные хроменоизохинолинамины **44а-g** проявляют флуоресцентные свойства - их растворы под действием УФ-излучения испускают синий свет, поэтому далее были изучены фотофизические свойства некоторых из них, определены максимумы поглощения и эмиссии, осуществлен расчет квантовых выходов.

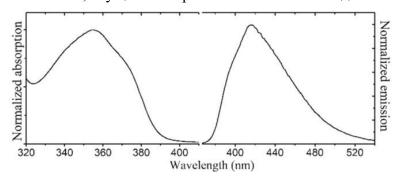


Рисунок 4.2. Спектр поглощения и эмиссии соединения 44а.

Оказалось, что спектры поглощения соединений **44a,d,e,f** и **g** имеют максимумы в 354-355 нм, а спектры эмиссии в 415-416 нм (Рисунок 4.2). Кроме того, интенсивность флуоресценции этих соединений увеличивалась в полярных и протонных растворителях, таких как метанол, и снижалась в хлороформе, ацетонитриле и толуоле. Поэтому измерение квантовых выходов осуществлялось далее в метаноле. В качестве стандарта использовался раствор сульфата хинина. Результаты представлены в Таблице 4.1¹.

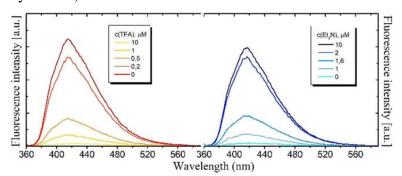

¹ Автор выражает благодарность к.х.н. Голанцову Н.Е. (РУДН) и Зайцевой С.О. (ИБХ РАН) за проведение исследования.

Таблица 4.1. Спектральные свойства хроменоизохинолинаминов в метаноле.

Соединение	Abs (нм), <i>e</i> (моль cм) ⁻¹	Ет (нм)	FQY (%)
44a	355 (4500)	415	48
44e	354 (6000)	416	58
44d	354 (4500)	416	42
44f	354 (4500)	415	70
44g	354 (4500)	415	57

Abs- максимум поглощения, e- коэффициент экстинкции, Em- максимум испускания, FQY- квантовый выход флуоресценции.

Кроме того, было замечено, что в присутствии кислот происходит тушение флуоресценции, которая может быть восстановлена при добавлении основания. Спектры испускания соединения **44a** в присутствии трифторуксусной кислоты в различных концентрациях позволяют установить, что при 10-ти кратном избытке кислоты происходит полное тушение флуоресценции, а при добавлении триэтиламина её интенсивность восстанавливается (Рисунок 4.3).

Рисунок 4.3. Спектры эмиссии соединения **44а** в экспериментах по тушению флуоресценции.

Таким образом, нами был разработан метод синтеза замещенных хроменоизохинолинаминов и изучены фотофизические свойства некоторых из них.

Выводы

- 1. Цианометильные производные являются ценными субстратами для дизайна новых домино- и мультикомпонентных процессов.
- 2. Показано, что цианометильные соли изомерных азаиндолов и тиенопридинов в домино-реакции с *о*-гидроксибензальдегидами приводят к соответствующим хромено[2',3':4,5]имидазо[1,2-*a*]пирроло- и хромено[2',3':4,5]имидазо[1,2-*a*]тиенопиридинам.
- 3. Разработан подход к синтезу замещенных по C(12) положению хроменоимидазопиридинов с использованием цианометильных четвертичных солей , *о*гидроксибензальдегидов и различных нуклеофильных агентов в присутствии окислителя.
- 4. Продемонстрировано, что гомофталонитрил может выступать в качестве винилога малононитрила в мультикомпонентных и домино-реакциях получения производных 2-иминохромена.
- 5. Разработан подход к синтезу нитрометил- и индолил-замещенных хроменоизохинолинаминов на основе трехкомпонентной реакции гомофталонитрила, *о*-гидроксибензальдегидов, нитрометана и индола.

Основное содержание диссертации изложено в следующих работах:

- 1. L.G. Voskressensky, O. A. Storozhenko, A.A. Festa, V.N. Khrustalev, T.T. Anh Dang, V. T. Nguyen, A. V. Varlamov. A novel domino condensation—intramolecular nucleophilic cyclization approach toward annulated imidazo-pyrrolopyridines. // Tetrahedron Letters, Vol. 56, № 46, 2015, P. 6475-6477.
- 2. L.G. Voskressensky, O.A. Storozhenko, A.A. Festa, R.A. Novikov, A.V. Varlamov. Synthesis of Chromenoimidazoles, Annulated with an Azaindole Moiety, through a Base-Promoted Domino Reaction of Cyanomethyl Quaternary Salts. // Synthesis, 2017, Vol. 49 №12, P. 2753-2760.
- 3. A.A. Festa, O.A. Storozhenko, D.R. Bella Ndoutoume, A.V. Varlamov, L.G.Voskressensky. Sequential three-component reaction of homophthalonitrile, salicylaldehydes and nitromethane. // Mendeleev Communications, 2017, Vol. 27, № 5, P. 451-453.
- 4. A.A. Festa, O.A. Storozhenko, N.E. Golantsov, K. Subramani, R.A. Novikov, S.O. Zaitseva, M. S. Baranov, A.V. Varlamov, L.G. Voskressensky. Homophtalonitrile for Multicomponent Reactions: Syntheses and Optical Properties of *o*-Cyanophenyl- or Indol-3-yl-Substituted Chromeno[2,3-*c*]isoquinolin-5- Amines. // ChemistryOpen, 2019, 8, P. 23–30
- 5. O.A. Storozhenko, A.A. Festa, D.R. Bella Ndoutoume, A.V. Aksenov, A.V. Varlamov, L.G. Voskressensky. Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/ oxidative cyclization reaction towards annulated imidazo[1,2-a]pyridines. // Beilstein J. Org. Chem., 2018, 14, P. 3078–3087.
- 6. О.А. Стороженко, Д.Р. Ндутум Бэлла, А.А. Феста, Truong Hong Hieu, Л.Г. Воскресенский, А.В. Варламов. Четвертичные соли тиенопиридинов в домино-реакции с *о*гидроксибензальдегидами. // Тезисы докладов Первой всероссийской молодежной школыконференции "Успехи синтеза и комплексообразования". Москва, РУДН, 2016, С. 181.
- 7. O.A. Storozhenko, A.A. Festa, M.T. Gorbacheva, L.G. Voskressensky, A.V. Varlamov. Domino transformations of dinitriles under basic conditions. // Тезисы докладов Domay organic conference cluster DOCC-2016. Book of Abstracts, Dombay, 2016, p. 259.
- 8. A.A. Festa, O.A. Storozhenko, D.N. R. Bella, A.V. Varlamov, L.G. Voskressensky. Sequential three-component reaction of homophthalonitrile, *o*-hydroxybenzaldehyde, and nitromethane. // Тезисы конференции The Fourth International Scientific Conference "Advances in Synthesis and Complexing». Book of abstracts, Vol. 1, Moscow, 2017, p. 213.
- 9. Стороженко О.А., Феста А.А., Воскресенский Л.Г., Варламов А.В. Последовательная трехкомпонентная реакция гомофталонирила, *о*-гидроксибензальдегидов и нитрометана. // Тезисы Всероссийской научной конференции с международным участием «Современные проблемы органической химии», посвященной 110-летию со дня рождения академика Николая Николаевича Ворожцова. Новосибирск, 2017, с. 293.

- 10. O.A. Storozhenko, A.A. Festa, L.G. Voskressensky. *N*-Cyanomethyl quaternary salts, *o*-hydroxybenzaldehydes and nucleophiles in synthesis of imidazo[1,2-*a*]pyridines annulated with chromene moiety. // Тезисы конференции 26th ISHC Congress, Regensburg, Book of Abstracts, 2017, P. 317.
- 11. О.А.Стороженко, А.А.Феста, Л.Г.Воскресенский. *N*-цианометильные четвертичные соли, *о*-гидроксибензальдегиды и нуклеофильные агенты в синтезе имидазо[1,2-*a*]пиридинов, аннелированных с хроменовым фрагментом. // Материалы конференции XII international scientific conference of postgraduates, masters and young researchers on "Actual Problems Of Chemistry" dedicated to 95th anniversary of national lider Heydar Aliyev. Баку, 2018, с. 14.
- 12. А.С. Голубенкова, Е.А. Соколова, А.А. Феста, О.А. Стороженко. *N* (цианометил)пиридиний хлорид, *о*-гидроксибензальдегиды и СН-кислоты в последовательной трехкомпонентной реакции с окислительным шагом. // Сборник тезисов докладов II Всероссийской школы-конференции, посвященной 100-летию Иркутского государственного университета и 85-летию химического факультета ИГУ БШКХ–2018. Иркутск, 2018, с. 17.

Стороженко Ольга Анатольевна (Россия)

Домино-реакции цианометильных производных в синтезе хроменов, аннелированных с имидазопиридиновым или изохинолиновым фрагментами

В работе изучена реакционная способность цианометильных производных, таких как N-цианометильные четвертичные соли изомерных азаиндолов, тиенопиридинов и пиридина, а также гомофталонитрила в домино-реакциях с салициловымии альдегидами. Впервые осуществлен синтез хромено[2',3':4,5]имидазо[1,2-а]пирролохромено[2',3':4,5]имидазо[1,2-а]тиенопиридинов, обладающих антипролиферативной активностью относительно линий клеток KB и HepG2. Было показано, что последовательная четвертичных *N*-цианометильных трехкомпонентная реакция гидроксибензальдегидами и нуклеофилами в присутствии окислителя приводит к ранее не описанным в литературе замещенным по C(12) хромено[2',3':4,5]имидазо[1,2-a]пиридинам. Изучены превращения гомофталонитрила в последовательной трехкомпонентной доминореакции с о-гидроксибензальдегидами и нитрометаном, аза/индолом, в результате чего были получены нитрометил-И флуоресцентные аза/индолил-замещенные хромено[2,3c]изохинолин-5-амины.

Storozhenko Olga Anatol'evna (Russia)

Domino reactions of cyanomethyl derivatives in synthesis of chromenes annulated with imidazopyridine and isoquinoline fragments

Reactivity of compounds bearing a cyanomethyl- group such as quaternary N-(cyanomethyl)azaindolium, thienopyridinium, pyridinium salts and homophthalonitrile in domino reactions with o-hydroxybenzaldehydes was studied. Synthesis of chromeno[2',3':4,5]imidazo[1,2a]pyrrolo- and chromeno[2',3':4,5]imidazo[1,2-a]thienopyridines, showing antiproliferative activity against KB and HepG2 cell lines, was realized for the first time. It has been shown, that the sequential three-component reaction of *N*-(cyanomethyl)pyridinium hydroxybenzaldehydes and nucleophiles in the presence of the oxidant results in the formation of substituted at C(12) chromeno[2',3':4,5]imidazo[1,2-a]pyridines which were not described in the literature before. Transformations of homophtalonitrile in sequential three-component dominoreaction with o-hydroxybenzaldehydes and nitromethane, aza/indoles were studied, that resulted in the formation of nitromethyl- and fluorescent aza/indolyl-substituted chromeno[2,3-c]isoquinoline-5-amines.