На правах рукописи

Поплевин Дмитрий Сергеевич

Эпоксиизоиндоло[1,2-а]азациклоалканы. Синтез и трансформации (02.00.03-органическая химия)

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

> Москва 2018

Работа выполнена на кафедре органической химии факультета физикоматематических и естественных наук Федерального государственного автономного образовательного учреждения высшего образования «Российский университет дружбы народов».

Научный руководитель:	Зубков Фёдор Иванович				
	кандидат химических наук, доцент				
Официальные оппоненты:	Коротеев Михаил Петрович				
	доктор химических наук,				
	профессор кафедры органической химии				
	химического факультета				
	ФГБОУ ВО «Московский государственный				
	педагогический университет»				
	Ворожцов Николай Игоревич				
	кандидат химических наук,				
	доцент кафедры органической химии				
	химического факультета ФГБОУ ВО				
	«Московский государственный университет				
	имени М. В. Ломоносова»				
-					

 Ведущая организация:
 ФГБОУ ВО «Северо-Осетинский государственный университет имени К. Л. Хетагурова»

Защита диссертации состоится «19» июня 2018 г. в 17 час. 30 мин. на заседании Совета по защите докторских и кандидатских диссертаций Д 212.203.11 при Российском университете дружбы народов по адресу: 117923, Москва, ул. Орджоникидзе, д. 3, зал №2.

С диссертацией можно ознакомиться в Учебно-научном информационном библиографическом центре Российского университета дружбы народов по адресу: 117198, Москва, ул. Миклухо-Маклая, д. 6.

Автореферат разослан « »_____2018 года.

Ученый секретарь диссертационного совета кандидат химических наук, доцент

Syon -

В.В. Курилкин

Общая характеристика работы

Актуальность темы. Одной из актуальных задач органической химии является синтез гетероциклических скаффолдов и их последующая модификация с образованием практически полезных продуктов. Важнейшим условием построения таких билдинг-блоков является простота синтеза и доступность исходных реагентов. Достижению этой практической цели посвящена настоящая работа, в которой в качестве исходных использовались α-фурилзамещённые азациклоалканы и лактамы. Разработка синтеза последних осуществлялась на базе простейших исходных: фурана, сильвана, пирролидина, пиперидина, азепана, морфолина, γ-бутиролактама, δ-валеролактама, ε-капролактама и др.

 α -Фурилзамещённые полностью насыщенные азагетероциклы являются прекрасными моделями для исследования на их примере тандемной реакции ацилирования (алкилирования) / [4+2] циклоприсоединения (IMDAF реакция, от англ. the IntraMolecular Diels-Alder reaction of Furan). Это превращение планомерно исследуется на кафедре органической химии РУДН в течение последних 15 лет на примере взаимодействия α -фурилзамещённых хинолинов, изохинолинов, пиперидонов, хиноксалинов и др. азинов с ангидридами α , β -непредельных кислот. В этих реакциях изучались как синтетические возможности и ограничения метода, так и стереохимия реакции внутримолекулярного [4+2] циклоприсоединения. В большинстве реакций использовались шестичленные гетероциклы, содержащие фурановый заместитель в α -положении к атому азота.

Несмотря на значительный экспериментальный материал, полученный как нашей, так и другими научными группами, на настоящий момент в литературе отсутствуют сообщения (и обобщения) о влиянии величины азотсодержащего кольца α-фурилзамещённых аминов на результат IMDAF реакции.

<u>Цели работы.</u>

1. Разработка и оптимизация синтеза α-фурилзамещённых циклических аминов и лактамов.

2. Изучение α-фурилазациклоалканов в IMDAF реакциях с диенофилами различной активности.

3. Установление зависимости: размер гетероцикла – строение продуктов IMDAF реакции.

<u>Научная новизна работы.</u> Установлено, что α-фурилзамещённые циклические амины, имеющие шестичленный цикл или цикл большего размера, вступают в IMDAF реакцию с активными и имеющими среднюю активность диенофилами с образованием двух диастереоизомеров конденсированных эпоксиизоиндолов.

α-Фурилпирролидин в реакции с активными диенофилами (малеиновый ангидрид) даёт циклический аддукт, который в растворах претерпевает ретрореакцию Дильса-Альдера с образованием таутомерной смеси, содержащей продукты раскрытия оксабициклического

3

фрагмента. Реакции α-фурилпирролидина с более слабыми диенофилами (акрилоилхлорид и аллилбромид) не сопровождаются внутримолекулярным циклоприсоединением. α-Фурилзамещённый азетидин не вступает в тандемную реакцию *N*-ацилирования / [4+2] циклоприсоединения даже при взаимодействии с активными диенофилами.

Аналогично себя ведут 5-7-членные α-фурилзамещённые лактамы в реакции с аллилбромидом. Шести- и семичленные циклы вступают в IMDAF реакцию с образованием таутомерной смеси циклического аддукта и раскрытых форм. В случае пятичленного цикла реакция заканчивается образованием лишь продукта алкилирования атома азота.

Таким образом, в диссертации рассмотрено влияние величины азацикла простейших α-фурилзамещённых аминов на результат последовательной реакции ацилирования (алкилирования) / внутримолекулярной реакции [4+2] циклоприсоединения, изучены закономерности IMDAF реакции, что позволит предсказывать её направление в более сложных объектах.

Практическая значимость работы. На основе простейших исходных разработаны препаративные мультиграммовые методы синтеза α-фурилзамещённых циклических аминов и лактамов, что сделало доступными для дальнейшего изучения их химические и практически полезные свойства. Исследованы закономерности протекания IMDAF реакции в α-фурилазагетероциклах. Получена обширная библиотека 3а,6-эпоксиизоиндолов, аннелированных с другими гетероциклами, изучена их биологическая активность и химические превращения.

Апробация работы. Результаты работы докладывались на III Международной научной конференции «Новые направления в химии гетероциклических соединений» (17-21 сентября 2013, г. Пятигорск), VI Молодёжной конференции ИОХ РАН (16-17 апреля 2014, г. Москва), III Всероссийской научной конференции «Успехи синтеза и комплесообразования» (21-25 апреля 2014, г. Москва), I Всероссийской молодёжной школе-конференции «Успехи синтеза и комплексообразования» (25-28 апреля 2014, г. Москва), Dombay Organic Conference Cluster, DOCC-2016 (29th May – 4th June 2016, Dombay, Russian Federation), The Fourth International Scientific Conference "Advances in synthesis and complexing" (24-28 April 2017, Moscow, Russian Federation).

<u>Финансовая поддержка</u>. Работа выполнена при финансовой поддержке РФФИ гранты №№ 16-03-00125 и 13-03-0015, а также в рамках задания Министерства образования и науки Российской Федерации (проект 4.1154.2017/4.6).

<u>Публикации</u>. По теме диссертации опубликовано 2 статьи в журналах, реферируемых БД WoS (Scopus) и 6 тезисов докладов на конференциях.

<u>Объём и структура диссертации</u>. Диссертационная работа изложена на 159 страницах машинописного текста и состоит из введения, обзора литературных данных,

4

обсуждения полученных результатов, экспериментальной части, выводов, списка цитируемой литературы, включающего 141 наименований, 1 приложение. Содержит 124 схемы, 37 таблиц, 9 рисунков.

Основное содержание работы

1. Синтез α-фурилзамещённых циклических аминов.

Ацилирование фурфуриламинов ангидридами α,β-непредельных карбоновых кислот с последующим внутримолекулярным [4+2] циклоприсоединением в образующихся амидах (IMDAF реакция) является одним из наиболее удобных методов построения системы изоиндола и широко используется в органическом синтезе. Если фурфуриламиновый фрагмент является элементом цикла, то этот подход позволяет получать эпоксиизоиндолы, аннелированные с другими карбо- или гетероциклами, что значительно расширяет синтетические границы реакции. При этом до настоящего момента в литературе имеется скудная и противоречивая информация о возможностях конструирования при помощи IMDAF реакции эпоксиизоиндолов, аннелированных с циклами, отличными ОТ шестичленного (рисунок 1).

Рисунок 1. IMDAF реакция, приводящая к аннелированным эпоксиизоиндолам.

Таким образом, главной целью настоящей работы являлось установление влияния размера цикла в ряду α-фурилзамещенных циклических аминов на результат IMDAF реакции. В качестве объектов исследования был выбран ряд наиболее простых, полностью

насыщенных циклических аминов, не содержащих других заместителей кроме α-фурильного. В большей части превращений, описанных ниже, в качестве модельного диенофила использовался доступный и высокоактивный в реакциях [4+2] циклоприсоединения малеиновый ангидрид. Этот набор компонентов позволил детально исследовать особенности протекания IMDAF реакции и разработать методы синтеза эпоксиизоиндолокарбоновых кислот, конденсированных с азациклами различного размера.

В литературе описан широкий арсенал методов, позволяющих получать азациклы, содержащие ароматический заместитель в α-положении к атому азота. Однако, большинство из них базируется на труднодоступных веществах.

Для синтеза исходных α-фурилзамещенных циклических аминов нами был разработан и оптимизирован четырёхстадийный подход, основанный на превращениях простейших азациклоалканов (1): пирролидина, пиперидина, азепана и морфолина (схема 1).

Схема 1

Наиболее эффективным методом активации α-положения к атому азота в таких системах оказалось электрохимическое алкоксилирование. Однако использование электролиза требует защиты легко окисляемой вторичной аминогруппы. Защита атома азота в соединениях 1 осуществлялась при помощи метилхлорформиата или этилхлорформиата в присутствии основания. Электролиз азациклов 2 проводился на угольных электродах в метаноле при различном напряжении (20-30 В) и силе тока (0.7-1.3 А) в присутствии фонового электролита - тетрабутиламмоний *пара*-толуолсульфоната. В качестве субстратов в реакции электрофильного замещения метоксигруппы в амидоэфирах 3 были выбраны наиболее доступные фуран и сильван, в качестве катализатора использовали *n*-TCK. Удаление защитной группы с атома азота в карбаматах 4а-з проводили в условиях щелочного гидролиза.

В отличие от 5-7-членных полностью насыщенных азациклоалканов, их восьмичленный аналог - азоцин 7, является дорогостоящим препаратом, и был синтезирован

6

нами исходя из циклогептанона **6**. Его дальнейшие трансформации осуществлялись по схеме 2, и в конечном итоге приводили к целевому пергидро-2-(фур-2-ил)азоцину **5**и.

Схема 2

Синтез 2-фурилазетидина 5к был основан на превращениях азетидинона 8 (схема 3).

Схема 3

Электрохимическое окисление β-лактама 8 и последующее алкилирование фураном амидоэфира 9 позволили получить α-фурилазетидинон 10. Его восстановление алюмогидридом лития даёт целевой α-фурилазетидин 5к.

2. Реакция α-фурилзамещённых циклических аминов с малеиновым ангидридом.

Набор полученных насыщенных азагетероциклов **5**, имеющих фурфуриламиновый фрагмент, был использован нами в качестве модельных объектов в IMDAF реакции. В качестве диенофила для исследования особенностей процесса был выбран доступный и реакционноспособный в реакциях Дильса-Альдера малеиновый ангидрид.

Амины **56-г,е-и** легко вступают в реакцию с малеиновым ангидридом при комнатной температуре с образованием смесей диастереомерных аддуктов **11A** и **11Б** (схема 4). Реакция протекает через первоначальное ацилирование атома азота с образованием промежуточных малеинамидов типа **A** и **Б**, а спонтанная внутримолекулярная реакция Дильса-Альдера по фурановому кольцу (*экзо*-[4+2] циклоприсоединение) завершает процесс. Реакция проста в экспериментальном оформлении: после смешивания реагентов аддукты типа **11**, как правило, кристаллизуются из реакционных смесей в течение суток (таблица 1).

Таблица 1. Продукты 11, соотношение и выходы.

Продукт	R	Х	Общий выход, %	Соотношение, А:Б
11бА,Б	Н	CH_2	87	81:19
11вА,Б	Н	(CH ₂) ₂	53	60:40
11гА,Б	Н	0	89	74:26
11еА,Б	Me	CH_2	47	54:46
11жА,Б	Me	(CH ₂) ₂	63	38:62
11зА,Б	Me	0	70	78:22
11иА,Б	Н	(CH ₂) ₃	72	68:32

На основании анализа реакционных смесей методом ЯМР ¹Н установлено, что в процессе реакции образуются смеси диастереомеров **116-г,е-иА** и **116-г,е-иБ** с соответственно *транс-* и *цис*-расположением эпоксидного мостика относительно метинового протона N-C<u>H</u>. Соотношение изомеров **11А/11Б** находится в диапазоне от 81/19 до 38/62. Как правило, изомер А преобладает.

Для изомерной смеси **116А,Б**, с наибольшим соотношением изомеров, на основании данных 2D ¹H NOESY спектров были установлены конфигурации узлового протона 10b (рисунок 2). При этом эксперимент ЯЭО оказалось нагляднее проводить для смеси изомеров, нежели для индивидуальных веществ. Так в спектре основного изомера **116A** наблюдается интенсивный кросс-пик между ключевыми протонами H-10b/H-6b, а в спектре изомера **116Б** – нет (рисунок 2).

Рисунок 2. ЯЭО между протонами Н-10b и Н-6b в аддуктах 116.¹

Отнесение изомеров **116-г,е-и** к **A** или **Б** ряду проводилось на основании величины химического сдвига узлового протона N-C<u>H</u> группы. Так в ряду **A** он находится в интервале 3.86-4.28 м. д., а в ряду **Б** при 3.49-3.66 м. д. (см. также данные PCA, рисунок 3).

Учитывая обратимость реакции внутримолекулярного [4+2] циклоприсоединения, с целью повышения диастереоселективности IMDAF реакции, нами были предприняты попытки варьирования температуры синтеза. Кипячение в бензоле аминов **56-г**,**е**,**з** с эквимолярным количеством малеинового ангидрида в течение 5 ч привело к изменению соотношения изомерного состава (таблица 2). Но при этом оказалось трудно сделать какие-либо выводы о влиянии температуры на соотношение изомеров. В некоторых случаях содержание изомера **А** уменьшается, в других – возрастает.

Соединение	R	X	Общий выход, %	Соотношение, А:Б при 20 °С	Соотношение, А:Б при 80 °С
11бА,Б	Н	CH ₂	72	81:19	62:38
11вА,Б	Н	(CH ₂) ₂	61	60:40	89:11
11гА,Б	Н	0	76	74:26	83:17
11еА,Б	Me	CH ₂	53	54:46	82:18
11зА,Б	Me	0	64	78:22	67:33

Таблица 2. Соотношение и выходы аддуктов 11.

Повышение температуры синтеза до 140 °С (IMDAF реакцию осуществляли в *о*ксилоле) приводило к значительному осмолению реакционных смесей и резкому падению выходов целевых карбоновых кислот **11**.

Аддукты **116-г,е-иА** и **116-г,е-иБ** представляют собой белые аморфные порошки, растворимые лишь в ДМСО и ДМФА при нагревании. Попытки получить из них монокристаллы, пригодные для анализа методом РСА, не увенчались успехом. Напротив, метиловые эфиры **12** прекрасно кристаллизуются из метанола (схема 5, таблица 3).

¹ Автор выражает благодарность к.х.н. Новикову Р.А. (ИОХ им. Н. Д. Зелинского РАН) и ЦКП (НОЦ) РУДН за проведение двумерных и динамических экспериментов ЯМР.

Схема 5

Таблица 3. Соотношение и выходы соединений 12.

Эфир	Х	Общий выход, (%)	Соотношение, А:Б
12бА,Б	CH ₂	82	38:62
12вА,Б	$(CH_2)_2$	75	42:58

Дробной кристаллизацией диастереомерных эфиров **12вА,Б** был выделен индивидуальный изомер **12вБ**, на основании данных РСА которого, была однозначно установлена пространственная конфигурация протона H-11a, и доказано его *цис*расположение относительно 8,11b-эпоксидного мостика (рисунок 3). Учитывая близость химических сдвигов протонов в спектрах ЯМР ¹Н кислот **11вА,Б** и их эфиров **12вА,Б**, можно с уверенность говорить об идентичности молекулярного строения эфира **12вБ** и исходной кислоты **11вБ**.

Для демонстрации синтетических возможностей аддуктов 11, нами была проведена ароматизация оксабициклогептенового кольца в диастереомерных смесях 116-гА.Б. Использование кислотных катализаторов для реакции раскрытия/ароматизации 7оксабицикло[2.2.1] гептенового фрагмента приводило к полимеризации реакционных смесей. Удовлетворительных выходов продуктов 13 удалось добиться лишь в 30%-ном водном растворе щёлочи (схема 6). При этом было установлено, что ни при кислотном, ни при основном катализе не удаётся ароматизировать кислоты 11е-зА, Б, содержащие метильную основании кислородного мостика. Из этих исходных образуются группу в многокомпонентные смеси продуктов.

² Автор выражает благодарность за проведение РСА д.х.н., профессору Хрусталеву В.Н. (РУДН)

Схема 7

α-Фурилпирролидины **5а**,д в IMDAF реакции ведут себя не так однозначно, как их шестичленные гомологи (схема 7). Взаимодействие аминов **5а**,е с малеиновым ангидридом при комнатной температуре в дихлорметане приводит к образованию аддуктов, которые кристаллизуются из реакционной смеси в виде диастереомеров **11аA** и **11дA** (доказано методом PCA, см. далее рисунок 4).

Таутомерная Таутомерная форма 14А существует форма 14Б существует только в растворе только в растворе СH₂Cl₂, к. т. O DMSO DMSO O R ĊO₂H HO₂C CO₂H 14а,дБ 14а,дА 11aA (R = H, 59%), 11дА (R = Me, 56%) Только таутомерная форма 11 присутствует в кристаллическом состоянии

Таблица 4. Соотношение изомеров продуктов 11 и 14.

$\mathbf{R} = \mathbf{H}$	11aA	14aA	14аБ
Мольное соотношение, %	60	20	20
$\mathbf{R} = \mathbf{M}\mathbf{e}$	11дА	14дА	14дБ
Мольное соотношение, %	30	33	37

Из данных ЯМР ¹Н-спектроскопии аддуктов **11а,**д в DMSO- d_6 было установлено присутствие трёх наборов сигналов. Детальный анализ данных ЯМР позволил заключить, что в растворе данных кислот устанавливается таутомерное равновесие между циклической формой **11A** и двумя раскрытыми формами **14A** и **14Б** (схема 7). Последние две формы являются *Z,E*-ротамерами по расположению амидной карбонильной группы и фуранового кольца относительно экзоциклической связи C-N. Заторможенное вращение вокруг амидной связи N-C в этих случаях является настолько медленным в шкале времени ЯМР, что сигналы обоих ротамеров хорошо разрешаются в спектрах. Существование кольчато-цепной

таутомерии в растворах аддуктов **11**, по-видимому, связано с высоким напряжением, возникающим при образовании тетрациклической системы **11**, состоящей из четырёх конденсированных пятичленных циклов.

Соотношение и конфигурация ротамеров **14A** и **14Б** были установлены на основании NOESY ¹H-¹H спектров ЯМР таутомерной смеси. Так, в спектре ротамера **14A** наблюдается кросс-пик между протоном H-2 малеимидного фрагмента (δ 6.68-6.45 м. д.) и протоном H-3 фуранового заместителя (δ 6.09-5.94 м. д.), который отсутствует в спектре ротамера **14Б** (рисунок 4).

Рисунок 4. Данные ЯЭО в ротамерах 14дА и 14дБ.

Для выяснения влияния температуры на положение равновесия ретро-реакции Дильса-Альдера 11 *≠* 14 нами, на примере взаимодействия амина 5а с малеиновым ангидридом, была проведена аналогичная IMDAF реакция в кипящем *о*-ксилоле. При этом были получены неожиданные результаты (схема 8).

Схема 8

После 4-х часового нагревания эквимолярных количеств пирролидина **5a** и малеинового ангидрида при 140 °C из реакционной смеси кристаллизуется единственный продукт **15aA**, который отличается от диастереомерного ему аддукта **11aA** (см. схему 7) эндо-ориентацией карбоксильной группы (схема 9).

Схема 9

При растворении образца **15аA** наблюдается ретро-реакция Дильса-Альдера и образование двух открытых форм **16аA** и **16аБ**. Данные спектров ЯМР ¹Н позволили установить не только пространственную ориентацию карбоксильной группы в продуктах реакции, но и соотношение таутомеров в смеси. На схеме 9 приведено относительное содержание компонентов в ~ 5 %-ом растворе DMSO- d_6 при 25 °C.

Предположительно, механизм реакции изомеризации малеимидного фрагмента в ротамерах **14a** включает автопротонирование кратной связи, образование альтернативных карбокатионов **17** и их последующее депротонирование, в результате чего образуется более термодинамически выгодный *транс*-изомер **16a** (схема 10). Далее, изомер **16a** вступает во внутримолекулярную реакцию Дильса-Альдера, приводящую к аддукту **15aA**.

Схема 10

Трансоидная конфигурация малеимидного фрагмента в ротамерах **16аА** и **16аБ** была установлена на основании КССВ вицинальных протонов при двойной связи. В спектре ЯМР ¹Н соединений **16а** ${}^{3}J = 15.8$ Гц, в то время как в изомерных им соединениях **14а** та же КССВ составляет лишь ${}^{3}J = 12.1$ Гц.

Тот факт, что в кристаллической фазе вещества **11аA** и **15аA** представляют собой только циклические формы, было доказано двумя методами: во-первых, игольчатые кристаллы соединений **11аA** и **15аA**, легко получаемые кристаллизацией из смеси этилацетат/этанол, оказались пригодными для рентгеноструктурного анализа (рисунок 5).

Рисунок 5. Молекулярная структура кислот 11аА и 15аА.

Во-вторых – с помощью динамических экспериментов ЯМР непосредственно в датчике спектрометра. Кристаллическое соединение **15аA** растворяли в DMSO- d_6 при комнатной температуре и сразу же записывали спектры ЯМР ¹Н. С течением времени наблюдалось появление и увеличение интегральной интенсивности сигналов протонов раскрытых ротамеров **16аA**, **16аБ**, при этом интенсивность сигналов циклической формы уменьшалась. Динамическое равновесие достигалось через сутки после растворения образца (таблица 5).

Таблица 5. Изменение процентного содержания изомеров при растворении аддукта 15аА в ДМСО.

Изомер	15aA	16aA	16аБ
Время			
2 минуты	100	0	0
1 час	97	1	2
4 часа	89	4	7
1 сутки	68	12	20
4 суток	68	12	20

В отличии от рассмотренных выше аминов **5**, α-фурилазетидин **5**к реагирует с малеиновым ангидридом только с образованием ротамеров амидов **18А,Б** (схема 11). Вероятно, геометрия и высокое напряжение валентных углов в теоретически ожидаемых тетрациклических аддуктах делают невозможным протекание внутримолекулярного [4+2] циклоприсоединения даже при нагревании до 200 °C в условиях микроволнового облучения. Реакционные смеси при этом сильно осмоляются.

Схема 11

2.3. Взаимодействие циклических α-фуриламинов с акрилоилхлоридом, циннамоилхлоридом и аллилбромидом.

Для расширения синтетического потенциала обсуждаемой реакции, помимо малеинового ангидрида в качестве диенофилов в IMDAF реакции, нами был испытан ряд других ангидридов непредельных карбоновых кислот.

Под действием акрилоилхлорида амины **56-г,е-з** претерпевали превращения, аналогичные изображённым на схеме 9. Акрилоилхлорид является более слабым диенофилом по сравнению с малеиновым ангидридом, поэтому реакция тандемного *N*-ацилирования / внутримолекулярного [4+2] циклоприсоединения проводилась при нагревании. В таких условиях фурфуриламины **56-г,е-з** взаимодействуют с избытком хлорангидрида акриловой кислоты с образованием продуктов **19** с удовлетворительным выходом (схема 12). Последние, как правило, выделялись в виде смеси диастереомеров **19А** и **19Б** с преобладанием первого (таблица 6).

Схема 12

Таблица 6. Соотношение и выход продуктов 19.

Соединение	R	Х	Суммарный выход, %	Соотношение, А:Б
19бА,Б	Н	CH_2	37	53:47
19вА,Б	Н	(CH ₂) ₂	44	59:41
19гА,Б	Н	0	71	92:9
19еА,Б	Me	CH_2	42	100:0
19жА,Б	Me	$(CH_{2})_{2}$	44	77:23
19зА,Б	Me	0	71	100:0

В двух случаях, **19e** и **19**3, был выделен исключительно изомер серии **A**. Вероятно, в этих реакциях хуже кристаллизующийся минорный изомер **Б** был потерян в процессе обработки реакционной смеси и хроматографического разделения сложной смеси продуктов.

Конфигурация узлового протона H-11a в изомерах **19вА / 19вБ** была установлена на основании данных NOESY ¹H ЯМР спектров (рисунок 6). В спектре основного изомера **19вА** ($X = (CH_2)_2$) наблюдается кросс-пик между ключевыми протонами H-11a/H-4a. В спектре минорного изомера **19вБ** кросс-пик между ключевыми протонами отсутствует.

Рисунок 6. Данные ЯЭО для аддуктов 19вА / 19вБ.

В спектрах ЯМР ¹Н других аддуктов **19** наблюдается примерно такая же разница между химическими сдвигами протонов. По аналогии с аддуктами циклоприсоединения малеинового ангидрида **11** (схема 4), отнесение изомеров **196-г,е-з** к **A** или **Б** ряду проводилось на основании величины химического сдвига узлового протона N-C<u>H</u>. В ряду **A** он находится в интервале 3.40-3.69 м. д., а в ряду **Б** при 3.84-4.94 м. д.

Экспериментально установлено, что взаимодействие 2-фурилпирролидинов **5а,е** с акрилоилхлоридом, в описанных на схеме 12 условиях, приводит лишь к образованию многокомпонентной смеси, из которой не удаётся выделить даже продукты *N*-ацилирования.

Реакция аминов **5е**, з с хлорангидридом коричной кислоты протекает с образованием двух диастереомеров **20еА** и **20еБ** в случае пиперидинового кольца и единственного изомера **20зА** в случае производного морфолина (схема 13).

Схема 13

Таблица 7. Суммарный выход и соотношение изомеров аддуктов 20.

Соединение	Х	Суммарный выход, %	Соотношение, А:Б
20еА,Б	CH ₂	34	74:26
20зА,Б	0	35	100:0

Молекулярная структура аддукта 203А была однозначно установлена методом РСА (рисунок 7), что позволило произвести отнесение изомеров 20е,3 к А или Б ряду на основании данных ЯМР ¹Н.

Как и в случае с малеиновым ангидридом (см. схему 4), ацилирование 2фурилпирролидина 5д хлорангидридом коричной кислоты протекает с образованием амида 20д, который в растворе представляет из себя смесь амидных ротамеров 20дА и 20дБ в соотношении 72:28 (CDCl₃, 25 °C). Отнесение ротамеров к ряду A или Б так же проводилось на основе эксперимента NOE. Так, в спектре ротамера Б наблюдался кросс-пик между одним из протонов циннамоильного фрагмента и протоном H-3 фуранового цикла, а в спектре 20дA аналогичный кросс-пик отсутствовал (схема 14). Продуктов внутримолекулярного [4+2] циклоприсоединения в реакционных смесях обнаружить не удалось даже после их многочасового нагревания в диапазоне температур 140-250 °C.

Схема 14

Реакция шестичленных аминов **5е**,**з** с гораздо менее диенофильным аллилбромидом протекает с образованием лишь продуктов *N*-алкилирования **21е**,**з** (схема 15).

Схема 15

Кипячение полученных *N*-аллилпроизводных **21** в *о*-ксилоле вплоть до температуры 270 °C с использованием микроволновой активации не приводит к ожидаемой внутримолекулярной циклизации.

2.4. Синтез фурилзамещённых лактамов и их взаимодействие с аллилбромидом и пропаргилбромидом.

Ещё одним объектом для исследования зависимости набора продуктов IMDAF реакции от величины кольца азацикла являются простейшие промышленно доступные лактамы. Так, на примере взаимодействия α-фурилзамещённых лактамов с аллилбромидом и пропаргилбромидом нами было продолжено изучение влияния размера цикла на результат внутримолекулярной реакции Дильса-Альдера.

Исходными соединениями являлись γ-бутиролактам 22а, δ-валеролактам 226 и εкапролактам 22в, электролитическое метоксилирование которых на графитовых электродах приводит к образованию производных 23а-в (схема 16). Хлорная кислота оказалась наилучшим катализатором для их взаимодействия с фураном или сильваном. При этом удалось получить целевые α-фурилзамещённые лактамы 24а,6 и 25а-в с приемлемым выходом.

Схема 16

Алкилирование лактамов **24а,6** и **256,в** аллилбромидом и пропаргилбромидом проводилось по стандартной методике в ДМСО в присутствии гидроксида калия при комнатной температуре (схема 17).

Схема 17

Полученные таким образом алкенилфураны были испытаны нами в реакции термического внутримолекулярного [4+2] циклоприсоединения. В качестве модельного соединения для отработки условий IMDAF реакции был выбран 1-аллил-6-(фурил-2)пиперидон-1 (**266**, схема 18). После его кипячения в *о*-ксилоле в течение 5 ч по данным ЯМР ¹Н образуется смесь ациклической формы **266** и двух циклических изомеров **296A/296Б** в соотношении 41/30/29 соответственно. Более продолжительное (12 ч) кипячение этой смеси в *о*-ксилоле не приводит к существенному изменению таутомерного состава, однако сопровождается постепенным накоплением неидентифицированных продуктов полимерного строения. Нагревание пиперидона **266** в условиях микроволнового излучения (230 °C, 10-11 бар, 30 мин) смещает равновесие в сторону циклических форм **296A/296Б**. Их суммарное содержание при этом повышается до 81%, против 40%, образующихся в ксилоле (таблица 8). Таким образом, равновесное состояние реакционных смесей достигается быстрее в микроволновом реакторе и все последующие эксперименты проводились в нём.

Схема 18

Исходное соединение	X	R	Условия	Соотношение изомеров (%)
				26а/29аА/29аБ
26a	-	Н	$o-\mathrm{Me}_2\mathrm{C}_6\mathrm{H}_4^{-1}$	100/0/0
			MW^2	100/0/0
				26б/29бА/29бБ
266	-CH ₂ -	Н	$o-\mathrm{Me}_2\mathrm{C}_6\mathrm{H}_4^{-1}$	41/30/29
			MW^2	19/21/60
			2	27б/29вА/29вБ
276	СЦ	Мо	MW^2	49/16/35
270	-C112-	Me	$C_2 D_2 C l_4^{3}$	85/4/11
			$C_2D_2Cl_4^4$	55/13/32
27 _P	-(CHa)a-	Me	MW^2	27в/29гА/29гБ
27B	(C112)2-	1010	101 00	49/14/35

Таблица 8. Условия синтеза и соотношение продуктов 26, 27, 29.

¹ Кипячение в *о*-ксилоле, 5 ч.

² Микроволновое облучение в MeCN, 230 °C, 10–11 бар, 30 мин.

³ Нагревание в ампуле ЯМР в 1,2-дидейтеро-1,1,2,2-тетрахлорэтане при 80 °С в течении 5 мин.

⁴ Нагревание в ампуле ЯМР в 1,2-дидейтеро-1,1,2,2-тетрахлорэтане при 140 °С в течении 8 ч.

Воздействие на *N*-аллилпроизводные **276** и **27в** микроволновым излучением в аналогичных условиях также приводит к равновесным смесям продуктов **276/29вA/29вБ** и **27в/29гА/29гБ**. При этом ни наличие метильной группы в 5-ом положении фуранового ядра,

ни увеличение размера азацикла до 7-членного существенно не сказывается на положении таутомерного равновесия.

Для изомерной смеси **266/296A/296Б** на основании данных 2D ¹H NOESY спектров была установлена относительная конфигурация атома углерода C-10b (рисунок 8). Так в спектре изомера **296A** наблюдается интенсивный кросс-пик между ключевыми протонами H-10b/H-6a, отсутствующий в спектре изомера **296Б**.

Рисунок 8. Данные ЯЭО для аддуктов 296А / 296Б.

Также были выполнены динамические эксперименты ЯМР непосредственно в датчике спектрометра для раскрытого изомера **276** в растворе $C_2D_2Cl_4$, с постепенным увеличением температуры. С течением времени наблюдалось появление и увеличение интегральной интенсивности сигналов протонов циклических изомеров **29вА**, **29вБ**, при этом интенсивность сигналов протонов раскрытой формы уменьшалась. Составы реакционных смесей при различных температурах приведены в таблице 9.

Таблица 9. Содержание изомеров 276/29вА/29вБ в таутомерной смеси при различных температурах.

Изомер	276	29вА	29вБ
Условия			
30 °C	100	0	0
80 °C	85	4	11
140 °C	71	9	20
140 °С, 8 ч	55	13	32
MW, 230 °C, 11 бар, 30 мин	49	16	35

5-Фурилпирролидон 26а, как при нагревании в ксилоле, так и в условиях микроволнового облучения (230-250 °C, 10-13 бар) не вступает реакцию В внутримолекулярного [4+2] циклоприсоединения (схема 19). В спектрах ЯМР ¹Н реакционной смеси не удалось обнаружить даже следов ожидаемых аддуктов Дильса-Альдера 29аА, 29аБ. По-видимому, это связано с высоким стерическим напряжением, возникающим при аннелировании четырёх пятичленных циклов в продуктах реакции. Л-Пропаргил-6-фурилпиперидоны 28а,6 в условиях микроволнового облучения при температурах до 250 °C также оставались неизменными, что связано с меньшей активностью тройной связи в реакциях циклоприсоединения в сравнении с двойной.

Схема 19

Для соединений **11аА**, **15аА** и **20зА** были проведены биологические испытания³ на наличие цитотоксичности по отношению к линии клеток *Vero* и активности по отношению к возбудителю вируса оспы (осповакцина). Исследованные соединения показали низкую цитотоксичность (CTD₅₀ от 25 и >100 ммоль/мл), а также умеренную активность по отношению к осповакцине (IC₅₀ 0.04-0.11 ммоль/мл).

³ Автор выражает благодарность за проведение биологических испытаний с.н.с., к.х.н., Яровой О.И. (НИОХ СО РАН)

Выводы

1. Разработаны методы синтеза насыщенных α-фурилзамещённых азагетероциклов, базирующиеся на продуктах крупнотоннажного производства. Установлено влияние размера цикла на результат взаимодействия этих аминов с ангидридами α,β-непредельных карбоновых кислот.

2. Показано, что α-фурилзамещённые циклические амины, имеющие шесть или более атомов в цикле, вступают в реакцию тандемного ацилирования/ внутримолекулярного [4+2] циклоприсоединения (IMDAF реакция) с ангидридами α,β-непредельных карбоновых кислот с образованием двух диастереомерных аддуктов Дильса-Альдера.

3. Доказано, что продукты IMDAF реакции между α-фурилпирролидинами и малеиновым ангидридом существуют в кристаллическом состоянии в циклической форме. В их растворах устанавливается таутомерное равновесие, включающее как циклическую (7,9а-эпоксипирроло[2,1-*a*]изоиндолы), так и открытую (*N*-малеинамидную) формы. При нагревании до 140 °C *N*-малеинамид 2-фурилпирролидина претерпевает неожиданную *Z*/*E*-изомеризацию малеинамидного фрагмента.

4. α-Фурилазетидин под действием малеинового ангидрида подвергается лишь ацилированию по атому азота.

5. При взаимодействии 6- и 7-членных α-фурилзамещённых азагетероциклов с аллилбромидом образуются аддукты IMDAF реакции – эпоксипиридо(азепино)[2,1*а*]изоиндолы. Пятичленные азациклы в этих условиях лишь алкилируются по атому азота. *N*-Пропаргилпроизводные не способны к термической внутримолекулярной реакции Дильса-Альдера.

Основное содержание диссертации изложено в следующих работах:

 Flavien A. A. Toze, Dmitry S. Poplevin, Fedor I. Zubkov, Eugeniya V. Nikitina, Ciara Porras, Victor N. Khrustalev. Crystal structure of methyl (*3RS*, *4SR*, *4aRS*, *11aRS*, *11bSR*)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-decahydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate // Acta Cryst. – **2015** – V. 71 – P. 729-730.

2. Dmitry S. Poplevin, Fedor I. Zubkov, Pavel V. Dorovatovskii, Yan V. Zubavichus, Victor N. Khrustalev. Crystal structures of the two epimers from the unusual thermal C6-epimerization of 5oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-*a*]isoindole-6-carboxylic acid, 5a(RS),6(SR),7(RS),9a(SR),9b(SR) and 5a(RS),6(RS),7(RS),9a(SR),9b(SR) // *Acta Cryst.* – **2016** – V. 72 – P. 1429-1433.

22

3. Д. С. Поплевин, Ф. И. Зубков. Влияние размера цикла на возможность IMDAF реакции в ряду 2-фурилпергидроазагетероциклов. // Тезисы докладов III Международной научной конференции «Новые направления в химии гетероциклических соединений», Пятигорск, 17-21 сентября 2013, С. 311.

4. Д. С. Поплевин, Ф. И. Зубков, И. Б. Митео. Синтез изоиндолов, аннелированных со средними азагетероциклами. // Тезисы докладов VI Молодёжной конференции ИОХ РАН, Москва, 16-17 апреля 2014, С. 259.

5. Д. С. Поплевин, Ф. И. Зубков, И. Б. Митео, Е. В. Романенко. Изучение IMDAF реакции на примере взаимодействия 2-фурилпергидроазагетероциклов с некоторыми диенофилами. // Тезисы докладов III Всероссийской научной конференции (с международным участием) «Успехи синтеза и комплексообразования». Москва, 21-25 апреля 2014, С. 260.

6. Д. С. Поплевин, И. Митео, Ф. И. Зубков, М. С. Кузнецова. Взаимодействие αфурилзамещённых аминов с производными непредельных карбоновых кислот. // Тезисы докладов I Всероссийской молодёжной школы-конференции (с международным участием) «Успехи синтеза и комплексообразования». Москва, 25-28 апреля 2016, С. 169.

7. Poplevin D., Miteo Y., Zubkov F., Tilve S. Peculiarity of the Interaction of 2-Furylpyrrolidine with Maleic Anhydride. // Book of abstracts of Dombay Organic Conference Cluster DOCC-2016, Dombay, Russia, 29 May - 03 June 2016, P. 231.

8. Poplevin D.S., Kuznetsova M.S., Kletskov A.V., Zubkov F.I. Interaction of α-furyllactams with allyl bromide. // Book of abstracts of The Fourth International Scientific Conference "Advances in Synthesis and Complexing", Moscow, 24-28 April 2017, P.193.

Поплевин Дмитрий Сергеевич (Россия) Эпоксиизоиндоло[1,2-*а*]азациклоалканы. Синтез и трансформации.

В работе разработан метод синтеза α-фурилзамещённых циклических аминов, базирующийся последовательном электрохимическом метоксилировании на нуклеофильном замещении метоксигруппы. Изучено влияние размера цикла на результат ацилирования (алкилирования) / внутримолекулярного [4+2] реакции тандемной циклоприсоединения (IMDAF реакция) этих фурфуриламинов с малеиновым ангидридом, акрилоилхлоридом, кротонилхлоридом, аллилбромидом и пропаргилбромидом. На примере взаимодействия α-фурилпирролидина с малеиновым ангидридом показана обратимость Дильса-Альдера. Синтезирован широкий 3,6а-эпоксиизоиндолов, реакции спектр аннелированных с другими гетероциклами.

Poplevin Dmitry Sergeevich (Russia)

Epoxyisoindolo[1,2-a]azacycloalkanes. Synthesis and transformation.

In the synthesis method developed α -furilzameschonnyh cyclic amine based on sequential electrochemical methoxylation / nucleophilic substitution of the methoxy group. The effect of loop size on the result of tandem acylation reaction (alkylation) / intramolecular [4 + 2] cycloaddition (IMDAF reaction) of furfurylamine with maleic anhydride, acryloyl chloride, krotonilhloridom, allyl bromide and propargyl bromide. An example of the interaction of α -furylpyrrolidine with maleic anhydride shows the reversibility of the Diels-Alder reaction. A wide spectrum of 3,6a-epoxyisoindoles synthesized, annelated with other heterocycles.