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Общая характеристика работы. 

 Актуальность темы. Диссертация посвящена теории образования ин-

гибирующего слоя на поверхности металлов при их взаимодействии с агрес-

сивными растворами электролитов, разрушающими металл. Кинетика анод-

ного растворения металла зависит от различных параметров. Ее закономер-

ности изучаются на стыке физики металлов, физической химии, в том числе 

растворов, и физики пограничных явлений. Затормозить эти спонтанные, 

термодинамически выгодные процессы рентабельными способами трудно, и 

актуальность этой проблемы не уменьшается. Среди большого количества 

способов противокоррозионной защиты, одним из которых является легиро-

вание, наименее дорогостоящим является нанесение лакокрасочных покры-

тий, однако этот способ не способен полностью решить проблему. Поэтому 

необходимо улучшать традиционные методы защиты поверхности металла 

созданием на ней тонких слоев труднорастворимых соединений, уменьшаю-

щих скорость ее разрушения на несколько порядков. Для этого необходимо 

изучить механизм образования и функционирования этих слоев.  

 Хорошо известно, что существует два основных вида пассивности: ад-

сорбционная и пленочная. Среди второго вида можно выделить оксидную 

(уменьшающая ток растворения на 5 – 7 порядков) и солевую (на 2 – 3 по-

рядка). Оксидная пассивность изучена достаточно хорошо, а механизм соле-

вой пассивации изучен не до конца. Существующие теории солевой пассива-

ции металла ограничены адсорбционными представлениями. Обобщая эти 

модели, представлена теоретическая модель образования и функционирова-

ния ингибирующего слоя, а также раскрыт механизм солевой пассивации. 

 Создание теоретической модели образования защитного слоя на по-

верхности металлов в агрессивной внешней среде необходимо для разработ-

ки рентабельных мер торможения процесса разрушения поверхности метал-

ла. Этим определяется актуальность темы диссертации. 
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 Цель диссертационной работы. Разработанная теория образования 

защитного слоя должна объяснять следующие вопросы: 

- установить закономерности гетерогенного зарождения двухкомпо-

нентных зародышей соли, обусловленные положительными флюктуациями 

анодного тока растворения; 

- определить изменение состава объема электролита (материнской фа-

зы) после образования зародышей солевого слоя, вследствие ограниченности 

объема зарождающейся солевой фазы (объема флюктуации ∆Vф) и затраты 

ионных компонент на его структуру; 

- раскрыть механизм формирования солевого слоя и специфику его 

функционирования, в частности объяснить нестабильность во времени его 

структуры (динамизм). 

 С этой целью необходимо рассмотреть уравнения взаимной диффузии 

анионов раствора электролита и катионов растворяющегося металла в слое с 

учетом сильного электрического поля. 

 

 Научная новизна. Научная новизна диссертационной работы опреде-

ляется следующим: 

- уравнения диффузии адаптированы для случая ионного массоперено-

са в объеме флюктуации с учетом электрического поля E
ur

; 

- для рассматриваемого процесса выведены выражения мольных элек-

трохимических потенциалов с учетом энергий дегидратации и энергии связи 

ионов с подложкой; 

- с использованием выражения электрохимических потенциалов в яв-

ном виде получены зависимости радиуса равновесного зародыша от концен-

траций ионных компонент, энергии дегидратации, напряженности электри-

ческого поля и анодного потенциала; 

- путем решения уравнения ионного массопереноса, получена функ-

циональная зависимость концентрации ионов от истинной плотности анодно-
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го тока, концентраций ионных компонент, коэффициентов диффузии, заряд-

ности ионов и пористости слоя на границе слоя с электролитом; 

- объяснен динамизм структуры слоя, получено условие его равновесия 

с электролитом и уравнение его толщины как функции различных парамет-

ров (коэффициентов диффузии ионов металла и компонентов электролита, 

зарядности ионов, пористости слоя и др.).  

- установлено существование неустранимой пористости структуры со-

левого слоя, ограничивающей его защитные свойства. 

 

 Достоверность результатов. Достоверность полученных в диссерта-

ции  результатов подтверждается строгими математическими доказательст-

вами, согласованностью литературных экспериментальных результатов с 

собственными теоретическими выкладками. 

 

 Практическая значимость. Полученные результаты могут быть ис-

пользованы для разработки научно обоснованных способов противокоррози-

онной защиты металлических конструкций. В частности, при разработке спо-

соба защиты путем формирования солевого слоя может быть использован 

развитый в работе механизм  его образования. Вычислены линейные размеры 

объемов флюктуаций, радиусы зародышей в зависимости от величины флюк-

туации тока, что согласуется с размерами кристаллитных зерен. Показано, 

что специфика солевой пассивации состоит в образовании зародышей в ма-

лом объеме флюктуации. Объяснен динамизм структуры слоя. Разработан 

метод гомогенного приближения, который позволил вычислить средние по-

токи ионных компонент и установить уравнение для толщины слоя. В целом 

в работе раскрыт механизм солевой пассивации. Это создает возможность 

поиска пути целенаправленного влияния на защитные свойства пассивирую-

щего слоя. 
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 Апробация работы. Результаты диссертационной работы докладыва-

лись: 

– на XLV, XLVI Всероссийских научных конференциях по проблемам 

математики, информатики, физики, химии (Москва, Российский университет 

дружбы народов, 2009, 2010 г.г.); 

– XV Российская конференция по физической химии и электрохимии рас-

плавленных и твердых электролитов (с международным участием)(Нальчик, 

Кабардино-Балкарский государственный университет им. Х.М.Бербекова, 

2010г.); 

– VII Российская ежегодная конференция молодых научных сотрудников 

и аспирантов (Учреждения Российской академии наук Института 

металлургии и материаловедения им. А.А. Байкова РАН, 2010г.); 

 

 Публикации. Основные результаты диссертации опубликованы в 8 ра-

ботах. Из них 4 статьи в журналах, входящих в Перечень рецензируемых на-

учных журналов и изданий ВАК, 4 публикации в материалах конференций. 

 

 Структура и объем работы. Диссертация состоит из введения, четы-

рех глав, заключения и списка используемой литературы. Объем диссертаци-

онной работы составляет 117 страниц, работа содержит 7 рисунков, 3 табли-

цы, список литературы насчитывает 103 наименования. 

 

Содержание работы. 

 

 Во введении обосновывается актуальность выбора темы, приводится 

обзор литературы, относящейся к теме диссертации. Формируется цель рабо-

ты, отмечается ее научная новизна и практическая значимость.  

 В первой главе излагается электрохимическая кинетика анодных про-

цессов на энергетически неоднородной поверхности металла S, учитываю-

щей экспериментальные данные [1 – 6] о флюктуациях плотности тока при 
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анодном растворении. Рассмотрена кинетика образования зародыша. Вычис-

лены их радиусы, линейные размеры объемов ∆Vk, время образования заро-

дышей τk и время существования флюктуации тока τз в зависимости от меж-

фазного скачка потенциала, концентрации ионных компонент и параметров 

кристаллитной структуры металла. 

 В реальности поверхность металлов S в силу ее энергетической неод-

нородности, которая обусловлена, например, его кристаллитной структурой, 

межзерновыми границами и др., может быть представлена в виде: 

 ( ) ( )0, kk k
k

S S i iϕ β ϕ= ∆ =∑   

где φ – анодный потенциал, i0(φ) – средняя на поверхности S (измеряемая) 

плотность флюктуирующего тока, ik(φ) плотность тока на k-ой площадке, βk 

описывает его флюктуации, т.е. отклонение ik(φ) от i0(φ).  

 В зависимости от токов на S флюктуируют и концентрации СМ, СА рас-

творяющихся ионов металла zM +  и анионов электролита Аn–. При достаточ-

но больших (положительных) флюктуациях тока (βk > 1) концентрации СМ и  

СА достигают уровня насыщения. И тогда области ∆Vk можно рассматривать 

как материнские фазы, в которых с определенной вероятностью W образуют-

ся двухкомпонентные зародыши соли a mA M . Концентрации СМ, СА этих 

компонент удовлетворяют условию электронейтральности и выражаются че-

рез приведенную концентрацию ( ),C r t
r

 которая определяется стандартным 

уравнением электродиффузии 
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 Эти уравнения описывают ионный массоперенос в объеме флюктуации 

∆Vф. граничная поверхность ∆Vф подвижна и представима лишь качественно. 

Упрощая, учтем, что диффузионный поток zM +  после их отрыва от 

поверхности ∆Sk локализован вдоль нормального к ней направления по оси 

ОХ, влияя тем самым на форму объема ∆Vф флюктуации. Приближенно она 

подобна столбику высотой h(t) и 

 kф
SthV ∆⋅= )(  (2) 

Поэтому движение ионов можно считать одномерным и задача (1) 

упрощается  

 

( ) ( )

( )( ) ( )( )

2

0 2

0

, ,

,
, , 0,

SC tC CD q t
t xx

C h t t
C h t t C

x

∂∂ ∂= = −
∂ ∂∂

∂
= =

∂

 (3) 

где С0 – объемное значение приведенной концентрации. В (3) предполагает-

ся, что ионы zM +  растворяющейся поверхности ∆Sk не выходят за пределы 

области x < h(t) и распределены в ее объеме ∆Vф. Они распространяются 

лишь вследствие движения ее границы x = h(t). Поэтому флюктуации ∆Vф 

определяется функцией h(t). Решая (3) находим выражение для h(t), а именно 

 ( ) ( ) ( )0 0
0

16 6
t

h t D q d D t
q t

τ τ= =∫  (4) 

Максимальное значение h соответствует моменту t = τ рождения зародыша, 

06mh Dτ= . На его структуру затрачиваются ионы объема ∆Vф, поверхность 

∆Sk экранируется. Следовательно, материнская фаза изменяется или вообще 

исчезает. 

 Мольные электрохимические потенциалы ∆µiк i-й компоненты в 

начальном Н и конечном К состояниях, (причем i = M, A соответствует ионам 
zM + , Аn–) 
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 (5) 

с учетом дегидратации и энергии ψ связи  ионов с подложкой. Изменение 

электрохимических потенциалов 
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 (6) 

 ,m a m a
K MK AK H MH AHС С C C С C= ⋅ = ⋅  

Поскольку форма образовавшегося зародыша в объеме ∆Vф флюктуации не 

известна, то примем, что он имеет форму сферического сегмента (рис. 1) и 

форму цилиндра (рис.2).  

  

 

Рисунок. 1. Зародыш в форме сферического сегмента на металле в растворе электролита 

(материнской фазе): R – радиус сферы, σмр,  σмз,  σрз - поверхностные натяжения металл – 

раствор, металл – зародыш, зародыш – раствор. Сферическая  часть поверхности 

Sсф=2πRh, площадь основания сегмента зародыша равна Sосн=2πr2=πR2 sin2
α, где 

sinr R α=  – радиус  зародыша, h=R(1- cosα)  - высота шарового сегмента. Из условия σмр 

+ σмз + σрз= 0,   получаем выражение для cosα: cos мз мрσ σ
α

σ
−

= ,  σрз= σ. 
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И тогда его радиус в первом случае определяется следующим образом  

 

( )

2
, sin , ,

ln ·

M
p M

К

Н

VB Mr B V
RTC

K
С

σ α ρ
ϕ 

 
  

= = =  (7) 

и с вероятностью 

 ( ) ( )2
0 2 .exp ,

3 sinp pW W Ar A
RT α
πσω α= − =  

 
Рисунок 2. Зародыш в форме цилиндра на металле в растворе электролита (мате-

ринской фазе): r%  – радиус зародыша, σмр,  σмз,  σрз - поверхностные натяжения металл – 

раствор, металл – зародыш, зародыш – раствор. h  - высота цилиндра. 

 

А во втором случае  

 % �, , .
ln ( )

M
Mp

K

H

VB Mr B V
RTCK

C

σ
ρϕ 

 
 

= = =
⋅

%
 (8) 

С вероятностью 

 %( )0 exp , .pW W Arh A
RT
πσ= ⋅ − =% %  

Так же вычислено время образования зародыша на активной площадке ∆Sk  

 ( )2

0 0
2

00

6 , k
k

M

z nD i
zFCDz n

D

βτ
 
 
 

+= Ω =
Ω + −

 (9) 

 0,93секkτ �  
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А также время жизни флюктуации (время растворения зерна) 

 
2

3
0

55,5сек
л

з
ав

z F l
i a N

τ
β

= �  (10) 

Таким образом, на активной площадке успевает образоваться зародыш, т.е. 

з kτ τ>  

 

 Во второй главе диссертации рассмотрена эволюция зародышей 

вследствие обеднения электролита ионными компонентами и взаимодействия 

ближайших соседей. Получено уравнение эволюции. 

 Реально в каждый момент времени tk зародыши возникают одновре-

менно на множестве достаточно активных площадок ∆Sk поверхности S. Ис-

точник ионов zM + (т.е. поверхность S) экранируется, а источник ионов Аn- 

(т.к. окружающий электролит) ими обедняется. Этим обуславливается взаим-

ное влияние ближайших соседних зародышей. В результате их концентрации 

СMk, CAk ионных компонент флюктуируют возле своих средних значений MC , 

AC  , т.е. 

 

.

,MMk Mk

AAk Ak

C C C

C C C

= + ∆

= + ∆
 

Каждая флюктуация ∆СMk, ∆СAk порождает случайное отклонение ∆rk радиуса 

rk зародыша на площадке ∆Sk от его среднего значения r по всем площадкам, 

т.е. 

 k kr r r= + ∆ . 

Следовательно, возникает статистический разброс радиусов. Уравнение 

эволюции с учетом кривизны поверхности зародыша радиуса r   

 
( )( ) ( ) ( )

( )
( )

0 2· ·

.

d t t
Q C t C B

dt r t

r r t

ρ ρ

ρ

 
 
  

∆ ∆= ∆ +

= + ∆

 (11) 
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Непрерывное анодное растворение поверхности S металла и подвод ионных 

компонент из объема раствора электролита обуславливает преимуществен-

ный рост зародышей. Постепенно они заполняют поверхность S, образуя 

первый слой ингибитора, который служит родственной подложкой для его 

последующего роста. 

 

В третьей главе получены уравнения заполнения поверхности металла рав-

новесными и неравновесными зародышами. Рассмотрена роль флюктуаций 

на поверхности анодно-растворяющегося металла. Показано, что флюктуа-

ции обеспечивают механизм стационарного функционирования ингибирую-

щего слоя. 

 На поверхности S металла возникают как равновесные, так и неравно-

весные (докритические) зародыши, распределенные по размерам согласно 

рис. 3.  Поэтому примем, что поверхность S состоит из трех частей: Sp(t), 

Sн(t), S0(t), то есть 

 ( ) ( ) ( )tStStSS нр 0++=  

Части Sp(t), Sн(t) покрыты равновесными и неравновесными зародышами; 

часть S0(t) остается свободной, не экранированной от электролита.  

 

 

 

Рис. 3. Распределение числа зародышей по размерам. 
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 В случае отсутствия свободной части поверхности S0, зародыши запол-

нили бы поверхность S металла, экранируя тем самым источник ионов zM + . 

Вследствие их эволюции, через некоторый промежуток времени t, этот слой 

должен раствориться. В результате появится доступ активирующих анионов 

А
n– к поверхности S металла и с некоторой вероятностью Wp образуются но-

вые зародыши соли. Таким образом, должен был бы наблюдаться периодиче-

ский процесс заполнения поверхности металла защитным солевым слоем и 

его растворение. Однако вместо этого в эксперименте в [1] обнаружено «ко-

пошение» кристалликов, их пульсации, соответствующие «мерцаниям» не 

только на поверхности S, но и во всем объеме слоя. Это говорит о том, что 

свободная часть S0 поверхности не может находиться в одном ее месте. Дей-

ствительно если это было бы так, то на поверхности металла возникли «дыр-

ки», что не соответствует эксперименту [1]. 

 Все части изменяются со скоростью 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2

1 2

0

,

,

,

p p p

н н н

p н

d

dt dt
d d

dt dt

dS t S tdS t

dt
S t S tdS t

dt
dS t d S S

dt dt











= +

= +

= − +

 (12) 

где 
( )1p

dt

dS t
, 

( )1нd

dt

S t
 – скорости изменения частей Sp(t), Sн(t) поверхности 

вследствие их заполнения зародышами, возникшими в текущий момент 

времени t; 
( )2pd

dt

S t
,

( )2нd

dt

S t
 – скорости изменения частей Sp(t), Sн(t) вследствие 

эволюции всех зародышей 

 Произведя ряд вычислений, запишем уравнения (12) в виде 

 

( )

( )

2
0 1

2
0 1

· ,

· ,

p p

н н

dt

dt

dSdS t
S

dt
dSdS t

S R
dt

= Ω +

= +
 (13) 
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Выражения для 1Ω , 1R , 2p

dt

dS
, 2н

dt

dS
 не приводятся из-за громоздкости. 

 В отсутствие флюктуаций, т.е. при С = 0, ∆r = 0, получаем что 

2 20, 0p н
dS dS

dt dt
= =  и (13) запишется в следующем виде (через степени 

заполнения поверхности металла зародышами) 

 

( )
( )

1

1

0

0
0

1 ,

1 ,

1,

, , ,

p
p н

н
p н

p н

p н
p н

d
dt

d
R

dt

S SS
S S S

Θ
= −Θ −Θ Ω

Θ = −Θ − Θ

Θ + Θ + Θ =

Θ = Θ = Θ =

 (14) 

и решение этих уравнений имеет вид 

 ( ) ( )1 1
1 11 , 1 ,at at

p н

R
e e гдеа R

a a
− −Ω

Θ = − Θ = − =Ω +  

 ( ) ( ) ( )0 1.p нt t tΘ + Θ + Θ =  

Согласно (14) 0,0 >Θ>
Θ

dt

d

dt

d
нp , т.е. положительны. Поэтому функции Θр, 

Θн, должны монотонно возрастать и в некоторый момент времени достигнуть 

максимального значения, т.е. 1p нΘ + Θ = . Это означает что зародыши запол-

нят всю анодную поверхность S, 0 0Θ =  и, следовательно S0 = 0, т.е. исчезнет 

источник ионов zM + , образующих вместе с анионами Аn– зародыши. При 

2 0pdS
dt

≠  и 2 0нdS
dt

≠ , т.е. наличии флюктуаций, согласно (3.15) уже 00 ≠S  и 

ситуация изменяется на противоположную.  

 Таким образом, флюктуации служат условием стационарного сущест-

вования рассматриваемого пограничного ряда зародышей, если только в их 

структуре участвует ион металла zM + . Это условие необходимо для сущест-

вования последующих их рядов.  
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 В четвертой главе исследованы особенности структуры защитного 

слоя, механизм движения в нем ионных компонент и его динамизм, установ-

лено существование в ней неустранимой пористости ограничивающей его 

защитные свойства. Разработан метод гомогенного приближения. 

 В ингибирующем слое полный массоперенос сопровождается локаль-

ными фазовыми переходами, его структура не находится в статическом со-

стоянии. Она динамична, и каждый ее элементарный объем в произвольный 

момент времени t является либо жидкой порой, либо заполнен твердой фа-

зой. Средним отношением времен его пребывания в этих состояниях опреде-

ляется неустранимая пористость структуры слоя, ограничивающая его за-

щитные свойства, что подтверждается уже упомянутым экспериментом [1 – 

5]. 

Структура слоя характеризуется своей толщиной δ, пористостью g(x), 

видимой (измеряемой) плотностью i(ϕ) тока растворения. Толщина δ связана 

с произведением растворимости Р формулой 

 ( )·M AC C Pδ =  

Пористость определяется долей жидкой фазы в объеме dV слоя 

 ( ) ( )
dV

xdV
xg ж= . 

На границе с электролитом 

 ( ) ( )
δ

−+≈ x
ggxg SS 1 . 

Видимая плотность анодного определяется как количество ионов zM + , пере-

ходящих за 1 сек в электролит. Имеем 

 ( ) ( )0Si g iϕ ϕ= , 

где i0(ϕ) – истинная плотность тока на свободной части S0 анодной поверхно-

сти. 
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 Уравнения ионного массопереноса в слое с локальными фазовыми пе-

реходами на стенках пор запишем в виде (введя так называемую приведен-

ную концентрацию A MC C
C

z n
= = ) 

 ( )
0

0,

· ,

MA M A

MA

C D C
t

q z n D Dq
D

z n nD zD

ω

ω

∂ = ∆ −
∂

+
= = =

+

 (15) 

с граничными условиями 

 

( )
( )

0

.
1 1· ·

S

S
M

S AS
AS

g i
C

zFD n z

E C
n C

ϕ

α

∇

∇

= −
+

= −
 (16) 

 Уравнения (15), (16) описывают диффузию лишь в поре пространства 

Ω слоя. Но в целом он представляет двухфазную твердо-жидкую систему и 

реально проявляется как сплошная гомогенная среда. Поэтому уравнения 

диффузии в слое в принципе нужно писать в криволинейных координатах с 

учетом подвижности граничной поверхности Σ и решать их, используя метод 

так называемого гомогенного усреднения. Уравнения движения частиц ус-

редняются по физически бесконечно малому объему ∆V, который должен со-

держать множество пор, но быть малым в сравнении с объемом всего солево-

го слоя. 

Произведя гомогенное усреднение уравнений (15), (16) по 

 твж VVV ∆+∆=∆  

В гомогенном приближении средняя по всему объему ∆V концентрация 

 ( ) ( )∫
∆

ξξ+
∆

=
V

г drC
V

rC
rrrr 1

 

Однако, фактически объемом интегрирования является лишь жидкая часть 

∆Vж, так как в твердой части ∆Vтв концентрация С = 0. поэтому 

 ( ) ( ) ( )1 ,г и
Vж ж

C r gC r g C r d
V

ξ ξ
∆

= = +∫∆
r rr r r

 (17) 
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где ( )rCи

r
 – истинная средняя концентрация (приведенная) в жидкой части 

∆Vж слоя. 

 Произведя операцию интегрирования (17) почленно к (15), в стацио-

нарном случае, а также считая что ионный массоперенос происходит в нор-

мальном относительно S направлении, т.е. по оси ох, имеем 

 

( ) ( )( )
( )
( )

( ) ( )

2

0 2

0

0,

1

u

S
S

M

S S

dD g x C x
dx

dC i
g

dx zFD n z

xg x g g

ϕ

δ

=

= −
+

= + −

 (18) 

Уравнение (18) совместно с уравнением термодинамического равновесия 

слой – электролит ( )2· ·m az n C Pδ =  определяют толщину слоя δ. 

 Решая уравнение (18) получаем выражение для истинной концентра-

ции на границе х = δ,слоя с электролитом.  

 ( ) ( ) ( )
( ) ( ) ( )

2 01u S S S
M

Bi
C g C g

zFD z n g g
ξϕξ δ ξ ξ

 
= + 
  

− −
+

 

 
δ

=ξ x
. 

 Таким образом, получена функциональная зависимость концентрации 

Сu от истинной плотности анодного тока растворения, концентраций ионных 

компонент, коэффициентов диффузии, зарядности ионов и пористости слоя. 

 

 Основные результаты диссертационной работы следующие: 

1. Показано, что на наиболее активных площадках ∆Sk поверхности S, возни-

кают локализованные области ∆Vk электролита в которых образуются двух-

компонентные зародыши труднорастворимого соединения a mA M , состоя-

щие из ионов zM + растворяющегося металла (катионов) и противоионов 

А
n- (анионов) электролита. Они создают пограничный защитный слой, на 

котором впоследствии вырастают его новые количества. 
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2. Вычислены линейные размеры объемов ∆Vk, радиусы зародышей, влияние на 

них межфазного скачка потенциала, их зависимость от величины флюктуа-

ции тока. Вычислено время образования зародышей, установлена его связь с 

кристаллитной структурой металла, а также время жизни флюктуации тока. 

3. Вычислен статистический разброс их радиусов k kr r r= + ∆ , влияющий на 

диффузию ионных компонент в слое и на его динамичную структуру, следо-

вательно, на его защитные свойства. 

4. Показано, что специфика процесса солевой пассивации состоит в образова-

нии зародышей в малом объеме ∆Vk. В нем ионные компоненты затрачива-

ются на образование зародыша и материнская фаза изменяется. Поэтому 

возникший зародыш оказывается в неравновесных условиях и начинается 

его эволюция, рассмотренная в работе (в общеизвестных теориях материн-

ская фаза не изменяется). Приведено уравнение эволюции. 

5. Рассмотрены статистические свойства множества зародышей. Показано, что 

их образование не является монотонным процессом. Их радиусы осцилли-

руют, но непрерывное анодное растворение и подвод анионов из объема 

электролита обуславливают преимущественный рост зародышей. Постепен-

но они образуют первый, пограничный с металлом пассивирующей слой со-

ли, покрывающий основную часть поверхности S. Он служит родственной 

подложкой для роста ее последующих слоев. 

6. Динамизм структуры слоя, названный авторами [1] «копошением» кри-

сталликов, обусловлен рассмотренными в работе процессами образования 

и растворения кристалликов соли на стенках пор, обеспечивающих изви-

листые пути движения растворяющихся ионов zM +  
металла и противоио-

нов An– электролита. 

7.  Для описания ионного массопереноса в двухфазной твердо – жидкой хао-

тической структуре солевого слоя разработан метод так называемого го-

могенного приближения, позволяющий вычислять средние  (измеряемые 

на эксперименте) потоки ионных компонент и установить уравнения для 

толщины солевого слоя.  
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 В целом в настоящей работе раскрыт механизм солевой пассивации, 

который пока – что не был исследован. Это создает возможность поиска пути 

целенаправленного влияния на защитные свойства пассивирующего слоя. 
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на поверхности металлов в агрессивной внешней среде. 

 

Разработана теоретическая модель образования пограничного защитно-

го слоя труднорастворимой соли, формируемого по механизму гетерогенного 

зародышеобразования на энергетически неоднородной поверхности анодно-

растворяющегося металла. Рассмотрена кинетика зародышеобразования и 

эволюция зародышей, обусловленная изменением материнской фазы. Полу-

чены уравнения возникновения и существования ингибирующего слоя на по-

верхности металла в агрессивной среде, исследованы особенности его струк-

туры, механизм движения в нем ионных компонент, установлено наличие 

неустранимой пористости, ограничивающей его защитные свойства. 

 

 

Vera A. Popova 

Fluctuation theory of the formation inhibiting layer 

 on metal surfaces in an aggressive medium 

 

A theoretical model of boundary protection layer of sparingly soluble salt is 

developed. The latter is formed by the of heterogeneous germ-formation mecha-

nism on energetically non-uniform of the anodic dissolution metal surface. There 

considered the kinetics of germ-formation and the evolution of germ due to the 

change of the parent phase. The equations of emergence and existence of protec-

tion layer on the metal’s surface in aggressive medium are obtained, the features of 

layer structure, movement mechanism of the ionic components in the layer are in-

vestigated, the presence of fatal porosity, limiting its protective properties is estab-

lished. 
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