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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ л ^ 
Актуальность темы исследования 
Тонкостенные оболочки в форме линейчатых геликоидов широко 

используются в строительстве и машиностроении. 
Данная работа посвящена исследованию оболочек в форме косого 

геликоида, как менее изученных по сравнению с другими видами линейчатых 
геликоидальных оболочек, например, в форме прямых и развертывающихся 
геликоидов. Известны параметрические уравнения косого геликоида только в 
несопряжснной неортогональной системе координат, квадратичные формы этой 
поверхности, а следовательно, геометрические и физические соотношения 
теории оболочек, а также уравнения равновесия имеют большой объем по 
сравнению с соотношениями для оболочек в форме тех поверхностей, 
уравнения которых могут быть получены в сопряженной и/или ортогональной 
системе. 

Степень разработанности темы исследования 
На сегодняшний день известны работы, в которых исследуется 

напряженно-деформированное состояние оболочки в форме косого геликоида. 
Например, в статье А.Р. Ярошенко исследуется непологая оболочка в форме 
косого геликоида по моментной теории с использованием гипотезы Кирхгофа-
Лява, задача решается численно-аналитическим методом. В этой работе 
осуществлен переход от неортогональной неоспряженной к ортогональной 
несопряженной системе координат при помощи замены переменной, что не 
совсем удобно для задания граничных условий и нагрузок. В работе В.К. 
Залесского рассмотрен расчет косогеликоидальной оболочки по безмоментной 
теории оболочек. В работах В.Г. Рекача, которые подробно проанализированы в 
настоящей диссертации, предложена методика расчета лишь пологих 
косогеликоидальных оболочек с небольшим шагом винта, причем методика не 
была реализована ни на одном примере. Таким образом, ни в одной из 
известных работ не построена и не реализована в расчетной методике 
моментная теория расчета тонких упругих оболочек в форме косого геликоида 
в несопряженной неортогональной системе координат, наиболее естественной 
для постановки граничных условий и задания нагрузок. Следовательно, тема 
диссертационной работы является актуальной. 

При современном уровне развития компьютерной техники исследователю 
стали доступны не только более мощные ЭВМ с высокой 
производительностью, но и достаточно совершенные программные средства 
для символьных расчетов, использующие усовершенствованные алгоритмы. 
Это позволило проводить расчеты с громоздкими выражениями, которые ранее 
были технически сложны, а зачастую невозможны. Выполненные в настоящей 
работе расчеты по моментной теории непологих оболочек в несопряженной 
неортогональной системе координат стали возможны благодаря современным 
программным средствам и мощному аппаратному обеспечению. 

Цель диссертации - анализ напряженно-деформированного состояния 
тонкой упругой оболочки в форме длинного косого геликоида при действии 



статических нагрузок, разработка соответствующей методики расчета, а также 
ее программная реализация. 

Задачи исследования, определенные для достижения цели: 
1. Анализ научной литературы по исследуемому вопросу, анализ методик, 

предложенных для аналитического и численно-аналитического расчета 
оболочек и возможностей приложения этих методов к расчету оболочки в виде 
косого геликоида. 

2. Построение моментной теории тонких упругих оболочек с применением 
гипотезы Кирхгофа-Лява в форме длинного косого геликоида в несопряженной 
неортогональной системе координат. 

2. Разработка соответствующего численно-аналитического метода расчета 
напряженно-деформированного состояния тонкой упругой оболочки в форме 
длинного косого геликоида. 

3. Решение числовых примеров для тестирования методики. 
4. Решение числовых примеров средствами метода конечных элементов 

для оценки достоверности, сравнения трудоемкости и практического удобства 
предложенной методики для случаев пологой и непологой оболочки, оценка 
выбора варианта системы координат с точки зрения удобства расчетов. 

5. Анализ предпосылок и допущений расчетной модели аналитического 
метода, предложенного проф. В.Г. Рекачем, и причин, по которым эта методика 
так и не была практически реализована ни в одном расчете. 

6. Оценка возможностей аналитических методов, оценка целесообразности 
разработки аналитических методов с узкими границами применения и 
значительными упрощениями расчетной математической модели. 

7. Проведение численных экспериментов по определению напряженно-
деформированного состояния оболочек в форме длинного косого геликоида с 
различными параметрами при помощи предложенной численно-аналитической 
методики, определение границ применимости модели. 

Для реализации поставленных задач необходимо было также разработать 
соответствующие программные алгоритмы. 

Научная новизна работы заключается в построении моментной теории 
расчета тонкой упругой оболочки в форме длинного косого геликоида, в 
частности: 

- Получены геометрические соотношения теории тонких упругих оболочек 
для случая длинного косого геликоида в двух вариантах - для пологой и 
непологой модели; 

- Получены физические соотношения теории тонких упругих оболочек для 
случая длинного косого геликоида в двух вариантах - для пологой и непологой 
модели; 

- Получена система уравнений равновесия моментной теории оболочек для 
случая длинного косого геликоида в двух вариантах - для пологой и непологой 
модели, и из нее выведена система трех обыкновенных дифференциальных 
уравнений в перемещениях; 



- На основе метода Рунге-Кутты в математической системе Maple 17 
получено численное решение результирующих систем разрешающих 
уравнений равновесия момептной теории оболочек для случая длинного косого 
геликоида модели. На основе функций перемещений построены алгоритмы 
нахождения внутренних силовых факторов; 

- Проведены численные эксперименты по оценке влияния геометрических 
параметров исследуемых оболочек на напряженно-деформированное состояние 
тонкой упругой оболочки в форме длинного косого геликоида по 
предложенной численно-аналитической методике, 

-При проведении численных экспериментов выявлена граница применения 
пологой и непологой модели. 

Также научная новизна заключается в анализе аналитической методики 
В.Г. Рекача расчета пологих оболочек в форме длинного косого геликоида, в 
которой обнаружены некорректные предпосылки, как то: 1) использование 
произвольных функций согласно технической теории пологих тонких упругих 
оболочек В.З. Власова, пригодных только для сопряженных систем, является 
некорректным, так как система координат косого геликоида в поставленной 
задаче не является сопряженной; 2) Выполненные численные эксперименты 

доказывают, что пренебрежение компонентой деформации кручения не 
является корректным, так сводит решение к тривиальному. 

Теоретическая и практическая значимость результатов исследований 
заключается в построении методики расчета напряженно-деформированного 
состояния тонкой упругой оболочки в форме длинного косого геликоида, в том 
числе: 

1. Разработанная на основе моментной теории методика расчета 
напряженно-деформированного состояния тонких упругих оболочек в форме 
длинного косого геликоида тонких упругих оболочек на действие статических 
нагрузок в двух вариантах - для пологих и непологих оболочек может быть 
использована в практических инженерных расчетах и научных исследованиях 
оболочек изучаемого типа. 

2. Программные алгоритмы, составленные на основе предложенной теории 
для оценки напряженно-деформированного состояния пологих и непологих 
тонких упругих оболочек в форме длинного косого геликоида, могут быть 
использованы при разработке нового программного обеспечения для научных 
целей, учебных работ, а также, при некотором усовершенствовании и создании 
пользовательского интерфейса, для практических расчетов. 

3. Разработанный программный алгоритм расчета напряженно-
деформированного состояния тонких упругих оболочек в форме пологого 
длинного косого геликоида в несопряженной ортогональной системе координат 
может быть применен к приближенному анализу напряженно-
деформированного состояния пологих тонких упругих оболочек в форме 
длинного косого геликоида с малым шагом винта. 

Методология, методы и средства исследования 



Основным методом исследований являются общепринятые положения 
теории тонких упругих оболочек на основе гипотезы Кирхгофа-Лява, для 
решения уравнений применяются численные методы Рунге-Кутты, для 
проверочных расчетов используется метод конечных элементов. Программные 
средства, использованные в данной работе - программный комплекс для 
символьных расчетов Maple 17, программные комплексы для 
конечноэлементных расчетов ANS YS 15 и ЛИРА 9.6. 

Основные положения, выносимые на защиту: 
1. Уравнения моментной теории расчета НДС тонкой упругой оболочки в 

форме косого геликоида в несопряженной неортогональной системе координат 
в двух вариантах: для пологой и непологой оболочки. 

2. Разработанная программа в среде Maple 17 для расчета длинного косого 
пологого геликоида. 

3. Разработанная программа в среде Maple 17 для расчета длинного косого 
непологого геликоида. 

4. Исследование границ применимости пологой и непологой модели. 
5. Обоснование некорректности расчетных предпосылок и допущений 

методики В.Г. Рекачадля расчета длинного пологого косого геликоида. 
6. Результаты численных экспериментов по оценке влияния 

геометрических параметров угла наклона прямых образующих и шага винта на 
напряженно-деформированное состояние оболочек в форме длинного косого 
геликоида из материалов с характеристиками стали и железобетона. 

Личный вклад соискателя 
Все исследования в данной работе выполнены соискателем в процессе научной 
работы единолично, по результатам опубликованы научные статьи. 

Степерь достоверности результатов 
Достоверность результатов основана на корректной математической 

постановке решаемых задач и адекватном применении расчетных 
математических моделей. Оценка достоверности производилась при помощи 
сравнения конкретных примеров, выполненных авторским методом и методом 
конечных элементов при помощи программ ANS YS 15 и ЛИРА 9.6, а также 
сравнением частных случаев с точными аналитическими решениями, 
полученными в других работах. 

Апробация работы. Основные результаты работы докладывались на 
следующих научно-технических конференциях: 

1.V Международная научная конференция "Задачи и методы 
компьютерного моделирования конструкций и сооружений" ("Золотовские 
чтепия")(РААСН, Москва, 2016). 

2.Научная школа-семинар молодых ученых и студентов с международным 
участием «Современные проблемы механики, энергоэффективность 
сооружений и ресурсосберегающие технологии» (РУДН, Москва, 2015). 

3.Между народные научно-практические конференции «Инженерные 
системы - 2013», «Инженерные системы - 2014», «Инженерные системы -
2015» (РУДН, Москва, 2013, 2014, 2015). 



4.Международная молодежная научная конференция «Прочность, 
ползучесть и разрушение строительных и машиностроительных материалов и 
конструкций», (РУДН, Москва, 2014). 

Публикации . По теме диссертации опубликовано шесть научных работ, из 
них четыре - в рецензируемых изданиях, рекомендованных Перечнем ВАК 
РФ. 

С т р у к т у р а и объем диссертации. Диссертация состоит из введения, 
четырех глав, заключения, списка литературы и приложений. Основной текст 
работы изложен на 138 страницах, содержит 66 рисунков, 3 таблицы. Список 
используемой литературы включает 138 наименований. Объем 2 приложений 
составляет 25 страниц. 

С О Д Е Р Ж А Н И Е Р А Б О Т Ы 
Во введении обозначена актуальность темы диссертации, 

сформулированы цели и задачи исследования, указана научная новизна, 
теоретическая и практическая значимость работы. 

В первой главе приведен обзор известных геликоидальных линейчатых 
поверхностей и место косого геликоида в их классификации, его геометрия, 
варианты задания. 

Приведен обзор литературных источников по аналитическим, численным 
и численно-аналитическим методам расчета линейчатых геликоидов на 
статические нагрузки. Обозначены основные области применения оболочек в 
форме таких поверхностей, приведены примеры сооружений и технических 
изделий. 

Рисунок 1 -Косой геликоид 

На современном этапе развития науки и техники подавляющее 
большинство инженерных расчетов выполняется по методу конечных 
элементов при помощи соответствующих компьютерных программ. 
Аналитические методы проигрывают методу конечных элементов в том 
смысле, что требуют введения большого количества допущений и упрощений, 
поскольку, как известно, большинство дифференциальных уравнений 
аналитического решения не имеет, и практически всегда задачу приходится 



сводить к более простой, к частному случаю и т.п. Однако аналитические и 
численно-аналитические методы обладают важным преимуществом 
прозрачности физического смысла, дают более очевидную картину при 
интерпретации результатов и изучении корреляций при изменении каких-либо 
параметров. Оба подхода - численный и аналитический - могут взаимно 
дополнять друг друга, использоваться параллельно для оценки достоверности 
результатов и лучшего понимания сути исследуемой проблемы. 

Во второй главе для лучшего понимания приводятся основные 
соотношения теории тонких упругих оболочек в варианте A.JI. Гольденвейзера 
и С.Н. Кривошапко, даются соотношения между величинами, используемыми в 
этих двух теориях, и на основе соотношений A.JL Гольденвейзера выводится 
моментная теория расчета напряженно-деформированного состояния оболочек 
в форме косого геликоида в несопряженной неортогональной системе 
координат. 

Приводится два варианта расчетных уравнений: 
1. Параметрические уравнения срединной поверхности оболочки 

принимаются в виде: 
X = и COS (р COS V, 
у — и cos <р sin V, 
z — и sin (р + сѵ, 

где ф - угол наклона образующих, 
с - параметр, связанный с шагом винта (шаг L = 2ттс). 

Квадратичные формы поверхности: 
А = 1, В = Ju2cos2<p + с2, F ' csintp, 

, _ ,, с cos m u2sin2q> 
L = 0, M = — . , N = , , . 

V u 2 + c 2 v u ' + c ' 

Этот вариант уравнения использовался в расчетах пологих оболочек, далее 
приведенные соотношения выведены с учетом допущений пологости. 

Пренебрегая производными по дѵ для длинного геликоида, получим 
выражения с обыкновенными производными: 

Уравнения равновесия: 
Ju2cos2<p + с2 d ( g-r: \ 

l b , T \ N ^ U C 0 S 4 > + с + cs ln(PsU J - э = 
cos <p Vu2 + с2 au 4 ' -Jw 

и cos ю 
rW„ + 

2cos2<p + сЧи2 + с2 

+Ju2cos2<p + с2Х + csirupY = 0, 

Ju2cos2<p + c2 d ( . /-J э eu sin<pcos <р 
Тт~,—ГиТЛ"""8" ц + Ѵц cos У + с Su) + Nu 

cos <р Vu2 + с2 du \ > Ju2cos2<p + сЧи2 + с2 

и COS (Û 
— s 

Vu2 + с2 



+csincpX + tJu2cos2<p + c2Y = 0, 

I—- ; г-/Л/ц Nv\ d / г^ r \ cos2<p(u2 + с2) 
V u W p + c* ^ + / + —(VuWy + c ^ U =Z = 0, 

\ки tiv/ au V / Ju2cos2<p + c2 

-y/uzcos2(p + c2 d . r——- . 
Q" = cos2<p(u2 + C0S <P + C + csin<pM-V -

cu sirup COS2<P UCOS2(p 
зМцц H ; ; M 

(uWo+c2)! U2COS2<p+C2 

Qv = , , —I yJu2cos2<p + c2[Muv + - = ' r Mu : 
cos<py/u2 + c2 du\ \ yJu2cos2<p + c2 J 

и cos p ^ u 2 + c 2 

+ U2+C2 JU
2COS2<p+C2 

Геометрические соотношения: 

d 
_ d С sill <рЬт,иС052<р CSln<PfaUv 

_i_ ,.213/2 + ' du (u2cos2(p + c 2 ) 3 ' 2 Ju2cos2<p + с2 

uuucos2ip ^ u 2 sin2 <p uz 

" u2cos2<p + c2 (u2cos2<p + c 2 ) V u 2 T c r 

c2 sin2 <puvucos<p | cos <jPVu2 + с2 £ Цу 

" (u2cos2<p + с2У>Чи2 + с2 y/u2COS2<p + С2 и2 + С2' 

UzUCOSip 11ц и С COSIр s in<p и2 с(и2
 + с2 + u2sin2tp) 

yju2cos2<p + сЧи2 + с2 (u2cos2<p + с2Чи2 + с2 {u2cos2q> + c2)(u2 + с2) 

2 Uz С U2 sin2<p и C0S3<P Vu2 + С2 Uy 
= Ш = (u2cos2<p + с2)(и2 + с2) (u2cos2(p + с2)\ 

и с sin (р costp Uu , Vu2 + С2 cosy —и. 
+ -

(u2COS2ip + C2)Vu2 + С2 i]u2COS2<p + с2 

d с cos <p u„ 
Yd = + 

Уг = 

du z ju2cos2<p + сЧи2 + с2 

и2 sin2 <p u„ с cos ф u„ 

(u2cos 2<p + c 2 ) ^ + С2 -Ju2COS2(p + c2Vu2 + c2 



+ с2 sin2 <ри~^иг 

COS cpyju2 + С2 COS IpJu2COS2<p + C2(u2 + С2y/2 

с2 COS ipuz 

Vu2 + c2{u2cos2<p + с2)3 /2 ' 

COS < р и ± и г с 2 c o s <p u z 

" *Ju2cos2(p + C2Vu2 + C2 (U2C0S2<P + c 2 ) ' / 2 Vu 2 + c2 ' 

sin 2«>(u2c0s2<p(u2+c2)-|c2(u2+c2+u2si7t2«>))cuz 1 С sin 2 qg 
KUV = (u2+C2)2/2(u2COS2«>+C2)2 +2(U2C 0 S2¥ > + C 2 ) y ^ ï ' ' 2 A 9 ' 

Подставим геометрические уравнения в физические и получим выражения 
для внутренних силовых факторов, зависящие только от перемещений: 

Nu — тё—z—(u(cos2<pcb2 + f2)b2cosq>Uu + bstcos2<p 

+2 (cos2<pob2 - f2sin<p)u2buz + b*t2cos<p^f), 

+cos3<pu(l - a)b2ftuv + 2 uf(b2cos2cp - f2~)bt2uz), 
= = ^ о т е ^ ) № ( c o s > u ( b 3 ( 1 + a ) f t 

+ (cos2q>ob2 - f2 - u2cos2<p - c2)b6)uv 

+{lf2{cos2<pcb2 - f 2 - u2cos2<p - c2)ct + sin2q>u2t2(l + o)b2cosip)uz + 

+(cos<pu(cos2<pab2 + f2 + u2cos2tp + c2)ftb + cos3<put2(l + tr)b3)Uu -

-(cos<pb3t3(l + a)f + (cos2<pab2 - f2 - u2cos2<p - c2)b3t2cos<p) 
= - е т ^ ( t 4 f c 2 1 £ + ^ (CCI + a)c 2 + u2c)cos2<p - c 2 ) £ - c 2 c o s 2 -

«0)и») ' 

= - ^ '> + I « 1 + ff)c2 + - £ +< 
+c2cos2<pb2(l-o))uz), 

b^t^costp ~~ U<1) cos2|p + c2"2 + sin(2<jf) + ccoscpfb4 ) uz)j, 

^ ( c ( s i n « , + u ( - i b 2 c o s ^ - / ^ ) t 2 ^ f - ( g c V + 

+ u 4 ) c o s 2 « ) ~ c 2u 2^s in2<p + с costpfb2)COS«) u z ) ) , 

где / = с sin«? = coi t s t , Ь = V c 2 + u 2 , t = , / c 2 + u2cos2<p, 

M„„ = 

M 



Eh_ 
a 
Eh 

2 ( 1 - O ' 
D2 = 

Eh3 

Eh3 

D4 = -12(1 + a) ' 

где С - жесткость оболочки на растяжение/сжатие, 

D - жесткость оболочки на изгиб. 

2. Параметрические уравнения срединной поверхности принимаются в 
виде: 

X = и cos V, 

у = и sin V, 

z = к и + с v. 
Квадратичные формы поверхности: 

А = VI + к2, В = Vu2 + с2, F = кс, 

I = о,м = -~=L=,n = , ,. 
Vyl2U2 + C2 ' \//t2u2+c2 

Этот вариант задания поверхности использовался для расчета как пологих, 
так и непологих оболочек. Приведенные далее соотношения выведены с учетом 
допущений для длинной оболочки, у которой закрепления прямолинейных 
краев не влияют существенно на НДС. 

Компоненты деформаций: 
й кси . к с 

rfïï1*" 1 

_ " " Л(с2+и2)г Л(с2+ц2)г 
£ u " Л ' 

и Un кил/1 + fc2U, 
£v " Л (с2 + u2) + ѴЛ2и2 + ? (с2 + и2)' 

Il t2^2 d 
d2(c2+u2)duUv 

кгс2и-щ, 

Л3(с2 + u2)2 J l T fc2C2 

d2(c2+u2) 



_ ццц cuz с к и ии 
ѵ ~ Ѵи2+с2ѴЛ2и2+с2 — (u2+c2) ~ A (u2+c2)VÄ2u2+c2' 

£ u v = <0 = ùlu + ÛJV, 
d 

Y = CUv 

U A Ау/u2 + сЧА2и2 + с2' 
и2 sin2 <p щ с cos Ip uu 

(u2cos2<p + c2)Vu2 + с2 7u2cos2q> + сЧи2 + с2' 

<Ju2COS2(p + С2 с2 sin2 cpu-£-uz 
cos <p Vu2 + с2

 c o s v ju2COS2<p + c2(u2 + c 2 ) l 

Vu2 + c2(u2cos2tp + с2У2' 

d 
_ __ c u u " u с к Uu 

1 + : 
A{A2u2 + с 2У' 2{с 2 + U2)\ 2 Л 3 ( с 2 + и 2 ) 2

 2Д2042іі2 + c2)(c2 + u 2 ) ï 
d 
du ѵ с é;uv с2ч2к2и, 

Kit« " 

2 A3{C2 + U2) Л ( Л 2 и 2 + C2)3/2(C2 + U 2) f 

ck(A2u2 + c2Y'2uz cuuu 

( и 2 + c 2 ) i4 2 y4(u2 + c 2 ) ( i 4 2 u 2 + c 2 ) 

fcц(-Лau8-ЗЛ6u6•c2-ЗЛ2u2•c4-/l2u2l:l'^•(J42+2)c12-(/^2+^)cв)ц„ сик{А2и2+с2)1~иг 

Л4(и2+с2)2(л2и2+с2)3 (u2+c2M2 

d 21 d с—uu и'к—lu 
I d u ^ d 

(и2+с2)Л3 (u2+c2)J/2i42-

Выражения для усилий: 

= - Î (E((/42u2 + сг)А2ки2а + (2c2+u2(42 + l))c2A2k)h )u 
(Д2и2 + c2)2(c2 + и2)іЛ (1 - it2) 

E(utr + uc2k2)h Ei/c2 + u2h d 
-Uu + г-*-* - т:^7.ии Э 3 I j 12ц , 

сA2u2 + c 2) ï (c 2 + U 2 ) ï ( l - <т2) ѵЛ2"2 + c 2 ( ! - d u 

Ehkcu E hu(A2yJc2 +u2) 
Nv = = uv + 2

 ; —il,, + 
vA2U2 + c2(c2 + U2)/t(l + и) (Д2и2 + c 2 ) î ( l _ ff2) 

£• h к с d Me2 + u2EOff d EhA k\/c2 + u 2 

, .==7: " ^ " u + л/12.,2 . -2.2Л.І (A2u2 + c 2 y A V + a ) d U *JA2u2 + c 2 ( l — o 2 ) ( Л 2 и 2 + 2c 2 ) ( l - <r2) 

К = T
 £ f c 3 1 , («fc 2 d + |<r - І ) (u 6 ( l + fc2)3 

(Л2и2 + c 2 ) ï (c 2 + u2)5/42 (1 - a 2 ) 4 u 



+ 3 u 4 ( l + /с2)2с2 + 3u 2 ( l + k 2)c 4) + a c10k2 +J°cl°-J с6)м с ц , ) + 

6 (Л2и2 + c2)ï(c2 + и2)Л2 (1 - ff2) 1 2 (Л2и2 + c2)i(c2 + и 2 ) Л 2 ( 1 - f f 2 ) d u 

1 ("Î + '42 + \ a ) c d l с с2к d 1—£ цѵ -| _ 
1 2 (Л2и2 + с 2)Ди 2 + с2)\а2 (1 - a2) d u " 1 2 (А 2и 2 + с 2 ) І4 (1 - a2) d u 

1 <j(c2+u2) d2 , 1 с2к2и2 

г u* + т : , . у , . , s u * . 12 (j42uz+c2)(1-£T2) du2 2 24(Л2и2+с2)(и2+с2)(1+<г) 

g h3 

Mu = 5 J ((7с(Л6и6 + 3u4 + Зс4Л2и2)2 -
12 (A2u2 + c2) l(c2 + u2)ïi42 (1 - a2) 

-^ f f (> t 6 u 6 + Зс2Л4и4 + 3cM 2 u 2 ) + 1 + c10/c2 + ^ c 1 0 - ^c 2 f f )u с иД -

E h3 (Q*2 - ; g + ï ) c2 ~ ; ( f f ~ 5)ц2/)2) c2 "" ЕЛ3 с2к2и2 

6 (Л2и2 + c 2) ï (c 2 + u2)A2 (1 - er2) 2 4 W2«* + c 2 ) (« 2 + с2)С1 + <0 2 

1 E > i 3 ( ( f f - f c 2 ) c 2 + u M 2 f f ) u d ( ~ 2 + j 4 2 ~ 2 g ) c d 

"12 (Л2и2 + с2)2 (1 - ff2) d u " 2 12 ( y | Ï M l + c 2 ) J ( t t I + e 2 ) ^ ( 1 _ f f ï ) d « U ' + 

+ ± E h > ' ' c k 3 g ( c 2 + " 2 ) d \ 
12 (A2u2 + c2)lA ( l - < r 2 ) d u 1 2 (^ 2 u 2

 + c 2 ) ( l - f f 2 ) d u 2 " 2 ' 

Mut> = (Л8и0 +~А^и6с2 + ^Л 4 и 4 с 4 + 
12 (Л2и2 + с2)Цс2 + и2)2Л3 (1 + ff) 

. 1 ч 1 Е/і3 ( ( с 2 + и 2 ) Л 2 - і с 2 / с 2 ! і 
+ ( - с 1 2 + с8 - ^ с 6 и 2 ) А2 - ±с 1 2 )и ft h 3 ^ ) i ; ' -

Ч 2 / Z 1"> <-42,,2 о. ,2W,2 ,.242,13 M 

I U С 
— и^ + 

12 (Л2и2 + с2)Цс2 + и2)2A3 (1 + ff) 

E c k (Л2и2 + c2 - 1 ) d ( Л 2 и 2 - і с 2 ) d 

+ 4 - - p " * ^ 2 — L — u„ + 
12 Л (с2 + и2)г(Л2и2 + с2)Л (1 + ff) d u 12 (с2 + Л2и2)1(и2 + с2)Л3 (1 + ff) d u 

Eh3 с d 
+ ï ; : + 

12 Л2 (с2 + и2)Цс2 + А2и2У (1 + ff) a u 

E h3c к , , ^ , 
- ( (с 2 и 4 + и6)Л4 + 

12 Л (с2 + u 2 ) 2 (c 2 + Л2и2)1 (1 + ff) 

+(2c 4u 2 + 2с2и4)Л2 + c 2(c 4 + c 2u 2 + ~к2и2))иг, 

M m = (((1 + А2)св + 3(fe2 + ^г)Л 2и 2с 6 + 
12 (Л2и2 + c2) î(c2 + и2)2Л3 (1 + ff) 6 



+3 (к2 + 1 ) Л4и4с4 + (fc2 + Л 6 и 6 с 2 + Авив)и киѵ-
Е h3 

- (с к(с6 + (2А2и2 + и2)с4 + 
12 (Л2и2 + с2)2(с2 + и2ДЛ (1 + tr) 

+ (л4и2 + 2Л2и2 - І /с 2 ) сги2 + Л4и6) -

5 (с((1 + 2 к2)А2 + ^к2)с* + А2(А2 + ^к2 + 1)и2с2 + 
12 (Л2и2 + c2)ï(c2 + и2)1Л2 (1 + а) 2 2 

Е h3k( с4 + (2і42и2 + к2)с2 + Л4и4)и с d 
+UM*)ll Uu) ; J~UZ + 

12 А (с2 + и2)5(Л2и2 + с2)2А (1 + ff) du 

Eh3 к ( Л Ѵ + Ѵ + Л Ѵ ) d E h3 с (Л2и2 + Л2с2) d 
ï Ä7Uv 5 : 77,^ + 

12 (с2 + А2и2)Ци2 + с2)А3 (1 + а) аи 12 (с2 + u2)î (с2 + А2и2)гА2 (1 + а)аи 

с к (с2 + ц2)1 d2 

+ 12 Л (с2 + А2и2) (1 + ff) du2 Щ' 

=s> = ï w + w i ï + w - * « * ' + u 2 ( A 2 + w e - * 1 « 1 - -

-2(fe2 - \ a + І )с 2 ) - (Л2и2 + c2)/c2 (1 + <f)c A2u2) uz) + 

+ \ , EH г (U(H2(1 - - k2V + °)Уг -
2 (Л2и2 + c2) ï(u2 + с2)5Л2(1 - ff2) 

-и 2 Л 2 ( 1 - а)) + к2С 1 + ff)c2u) і і„ + 

+ \ 3—^— (u с к А ( ( - л 2 ( 1 - а) - к2 {1 + а))с2 + 
2 (Л2и2 + с2)г(и2 + с2)Л2(1 - ff2) 

-и2А2( 1 - ff)) - (Л2и2 + c2)fc(l + tr)с Л u)uy) + 

+ 4 4 - т — (Л2(1 - ff) + к2(1 + ff))c2 - Л2и2(1 - ff)) -
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, 2 2/-1 і i-, а 1 епк н и х а 
- к 2 с 2 ( 1 + ff))—Ut ï 

d u 2 (/1^+^)14(1-^) d u 

Далее эти выражения подставляются в уравнения равновесия общего вида 
(по A.JI. Гольденвейзеру), в которых приняты пренебрежимо малыми 
производные по дѵ для длинного геликоида. 

Далее система уравнений в первом или втором варианте задания сводится 
к системе трех обыкновенных дифференциальных уравнений в перемещениях и 
может быть после соответствующих преобразований сведена к системе 
обыкновенных дифференциальных уравнений восьмого порядка в 
каноническом виде и решена численно при помощи алгоритма Рупге-Кутты 
методом прогонки. 

Во второй главе рассматриваются тестовые примеры для расчета пологих 
оболочек и сравнение с консчноэлементным расчетом в программе ЛИРА 9.6. 



Численные эксперименты показывают, что решение согласно теории пологих 
оболочек даёт корректные результаты для оболочек с углом наклона 
образующих до 10°. 

В третьей главе производится исследование методики аналитического 
расчета напряженно-деформированного состояния косого геликоида, 
предложенного В.Г. Рекачем и не доведенного до практической реализации ни 
в одной работе. 

При анализе методики выяснено: 
1)В корнях основного уравнения методики содержится ошибка, 
2)При решении системы с граничными условиями, предложенными в 

работе В.Г. Рекача, получено тривиальное решение, 
Проанализированы расчетные предпосылки метода, при этом выяснено: 
- задание граничных условий вызывает сомнение, поскольку допущение 

хи ѵ=0 неоправданно, 
- применены уравнения неразрывности деформаций с произвольными 

функциями напряжений В.З. Власова, что некорректно для несопряженной 
системы координат, 

- нагрузка рассматривается только по оси z подвижного трехгранника, что 
является достаточно грубым упрощением. 

Были получены аналогичные уравнениям В.Г. Рекача уравнения 
смешанного метода, но без применения произвольных функций В.З. Власова, 
выяснено, что они не имеют аналитического решения. 

Поскольку подход В.Г. Рекача применим только в узком диапазоне, а 
именно, только для пологих оболочек с пренебрежимо малым параметром с, 
было решено далее его не использовать. 

В четвертой главе приводится сравнение результатов, полученных по 
методике, разработанной в главе 2, с результатами, полученными другими 
методами. Сравнение проведено с целью проверки достоверности результатов и 
определения границ применимости пологого и иепологого варианта авторской 
методики. Сравнение с результатами расчета прямого геликоида (как частного 
случая косого) полуаналитическим методом и точным аналитическим методом, 
разработанным в диссертации М.И. Рынковской «Изгибание и задачи расчета 
тонких упругих оболочек в форме прямого и развертывающегося геликоидов на 
распределенную нагрузку и осадку одной из криволинейных опор». Получено 
близкое совпадение результатов. 

Для оценки достоверности результатов также сравнивались значения, 
полученные полуаналитическим методом и методом конечных элементов. Из-за 
разницы в системах координат выводимых данных самым удобным 
представляется сравнивать суммарный вектор упругого смещения, полученный 
двумя указанными методами. Обнаружено также близкое совпадение. 

Пример: Рассмотрим оболочку из материала с характеристиками стали, 
жестко закрепленную по обоим краям, загруженную вертикальной равномерно 
распределенной нагрузкой. Угол наклона образующих cp=30°,контурные 



радиусы— R|=5M , R2=6,7M; толщина 2 см, шаг винта направляющей — 0.01 2л; 
характеристики материала: Е=200000 МГІа, ѵ=0.3 величина нагрузки - 10 кПа. 
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Рисунок 3- Эпюры прогибов в расчетном сечении, м 
В четвертой главе были проведены численные эксперименты по изучению 

влияния на Н Д С геометрических параметров - угла наклона образующих и 
шага винта. 

В первой серии расчетов численного эксперимента рассматривались 
геликоиды с различными углами наклона образующих ф - 1 0 , 20, 30, 40, 50, 60 
градусов, материал с характеристиками железобетона, модуль упругости 
Е=32500 МПа, коэффициент Пуассона ѵ=0.17, толщина 0.1 м, внутренний 
радиус R | = 2м, наружный R 2 =4 м, шаг винта Н= 0.628 м (иначе говоря, с=0.1), 
нагрузка типа собственного веса 10 кПа, по обоим краям жесткое защемление 



образующей 
Во второй серии расчетов рассматривались геликоиды с разными 

параметрами с=0.01, 0.05, 0.1, 0.5, 1, 2, материал оболочки имеет 
характеристики стали, модуль упругости Е=200000 МПа, коэффициент 
Пуассона ѵ=0.3, толщина 0.02 м, внутренний радиус R l = 5м, наружный R2=6.7 



м, нагрузка типа собственного веса ЮкПа, по обоим краям жесткое 
защемление. 

В з а к л ю ч е н и и диссертационной работы приводятся основные выводы и 
результаты работы. 



В приложения А и Б включены алгоритмы (фрагменты кода с 
пояснением) двух программ в Maple 17 - для расчета пологих и непологих 
оболочек соответственно. 

ЗАКЛЮЧЕНИЕ 
Итоги исследования: 
1. Предложена моментная теория расчета оболочек в форме косого 

геликоида в несопряженной неортогональной системе координат для пологих 
оболочек. 

2. Предложена моментная теория расчета оболочек в форме косого 
геликоида в несопряженной неортогональной системе координат для непологих 
оболочек. 

3. Апробирована методика В.Г. Рекача по расчету длинной пологой 
оболочки в форме косого геликоида, исправлена ошибка в корнях итогового 
уравнения, получено тривиальное решение. 

4. Проведен анализ расчетных предпосылок, определены сомнительные 
положения и упрощения: использование произвольных функций согласно 
технической теории оболочек В.З. Власова вне границ их применения - в 
несопряженной системе координат; предположение о том, что кручение ии ѵ= 
О, для постановки граничных условий. 

5. Впервые произведен расчет пологой оболочки с учетом всех допущений 
метода В.Г. Рекача, исключая те, что признаны сомнительными, 
полуаналитическим методом - получено удовлетворительное решение, 
результаты которого совпадают с результатами, полученными по методу 
конечных элементов. 

6. Произведен вывод уравнений, аналогичных уравнениям методики В.Г. 
Рекача, но без использования произвольных функций В.З. Власова - система 
уравнений не имеет прямого аналитического решения. 

7. Разработаны компьютерные программы, в которых реализуются: 
- пологая модель расчета исследуемой оболочки в нссопряженных 

неортогональных координатах; 
- ненологая модель расчета исследуемой оболочки в несопряженных 

неортогональных координатах; 
- пологая модель в ортогональной системе координат согласно допущению 

В.З. Власова. 
8. Проведены численные эксперименты по определению границ пологой и 

непологой модели - установлена граница применимости пологой модели до 100 
наклона образующей. 

9. Впервые проведены численные эксперименты по изучению влияния па 
напряженно-деформированное состояние оболочки изменения параметров угла 
наклона образующих и шага винта. 

10. Проведена оценка достоверности предложенного метода при помощи 
сравнения полученных результатов с результатами по методу конечных 
элементов и аналитическому методу для частного случая. 



Все задачи, поставленные в работе, были решены. 
Рекомендации и перспективы дальнейшей разработки темы 
Рекомендуется применять разработанную методику численно-

аналитичсского расчета для предварительных расчетов конструкций, а также 
для сверки с результатами конечноэлементных расчетов реальных конструкций 
для их оценки и лучшего понимания их работы, для разбора некоторых 
«эталонных» случаев. 

Перспектива дальнейших исследований видится в применении 
приведенных в работе численно-аналитических подходов при определении 
напряженно-деформированного состояния других малоизученных оболочек 
сложной геометрии с наименьшим количеством упрощений и огрублений 
расчетной модели с тем, чтобы в полной мере реализовать потенциал 
современных вычислительной техники и программирования при решении 
подобных задач. 
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