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АКТУАЛЬНОСТЬ ТЕМЫ ДИССЕРТАЦИИ 

Разработка аналитических методов для расчета термодинамических параметров 

твёрдых тел, в частности, кристаллов, всегда представляла собой одну из главных целевых 

задач термодинамики и статистической физики. В настоящей диссертации предпринята 

попытка приблизиться к аналитическому решению этой задачи, исходя из комбинации 

точных первопринципных термодинамических и нетермодинамических соотношений. 

СТЕПЕНЬ РАЗРАБОТАННОСТИ, ЦЕЛИ И ЗАДАЧИ 

в первом разделе диссертации рассматривается вопрос получения точного и явного 

аналитического выражения для свободной энергии тела в классической статистике. 

Во ВТОРОМ разделе диссертации аналитически рассматривается вопрос введения 

динамического среднего поля в кристалле, на основе гамильтониана Хаббарда (для т-зон), 

в рамках модели вложенного атома - embedded-atom method, с последующим вычислени-

ем всех термодинамических функций кристалла, а также причинной, запаздывающей и 

опережающей мацубаровских функций Грина (ФГ). Некоторые результаты этого раздела 

диссертации сравниваются с известными, более точными (то есть в рамках более точных 

моделей) вычислениями, например, со спектральной плотностью уединенного атома (хаб-

бардовский результат-метод двухвременных температурных ФГ [1], результат Изюмова-

Курмаева [2]- теория функционала плотности и антиферромагнетизм Нагаоки при поло-

винном заполнении электронной зоны в основном состоянии кристалла [3]). 

НАИБОЛЕЕ СУЩЕСТВЕННЫЕ РЕЗУЛЬТАТЫ И ИХ НОВИЗНА 

в классической части диссертации-это нолучение явного и точного вида свобод-

ной энергии тела (при условии, что потенциал взаимодействия его структурных единиц в 

нашей модели является однородной функцией) в рамках классической статистики. Этот 

аналитический результат является совершенно новым результатом. 

в квантовой части диссертации таковыми результатами являются основные тер-

модинамические параметры однопримесного гамильтониана (модели вложенного атома) 

- это внутренняя энергия и основные корреляционные функции (КФ) рассматриваемой 

модели, в том числе, её причинные, запаздывающие и опережающие мацубаровские ФГ. 



ТЕОРЕТИЧЕСКАЯ И ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ ПОЛУ-
ЧЕННЫХ РЕЗУЛЬТАТОВ 

Результаты по классической части дают возможность аналитически строить всю 

термодинамику классических систем с однородными потенциальными энергиями. 

Результаты по квантовой части позволяют точно вычислять, в приближении одно-

примесного гамильтониана, различные макроскопические параметры (энергия, различные 

средние, с учётом взаимодействия электронов на одном узле решётки, ...) и микроскопи-

ческие величины (электронные энергетические спектры, плотности одноэлектронных 

энергетических состояний,...). 

МЕТОДОЛОГИЯ и МЕТОДЫ ИССЛЕДОВАНИЯ 

Аналитические расчеты проводились с использованием: 

1) метода характеристик (при решении дифференциальных уравнений в частных 

производных); 

2) теории возмущений для многих взаимодействующих тел; 

3) метода ФГ в теории многих взаимодействующих тел; 

4) теории динамического среднего поля на основе метода вложенного атома. 

ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ 

1) в классической части диссертации: 

а) установление точного и явного вида свободной энергии классического тела 

с однородной потенциальной энергией, позволяющей строить всю термо-

динамику таких систем; 

2) в квантовой части диссертации: 

a) вычисление точных термодинамических параметров электронной системы 

кристалла для однопримесного гамильтониана; 

b) точное вычисление запаздывающей и опережающей локальных ФГ для это-

го однопримесного гамильтониана; 

c) точное вычисление собственно-энергетической части локальной 

ФГ, фигурирующей в уравнении Дайсона для неё, по развитой здесь тео-

рии возмущений для однопримесного гамильтониана. 



СТЕПЕНЬ ДОСТОВЕРНОСТИ И АПРОБАЦИЯ 

Результаты по классической части диссертации не являются модельными - они 

суть точные аналитические результаты (для систем с однородной потенциальной энерги-

ей), и поэтому не нуждаются в специальном их обосновании. 

Результаты по квантовой части, то есть по однопримесному гамильтониану (ши-

роко используемое приближение в задачах но твёрдому телу), приводят к известным вы-

ражениям, например, к антиферромагнетизму Нагаоки [3] для половинного заполнения 

энергетической ns-зоиы, и к спектральной плотности уединённого атома, взятых при ну-

левой температуре. Этот результат совпадает с выражением, полученным Хаббардом в 

своих расчётах методом двухвремеииых температурных ФГ в атомном пределе [1], и с ре-

зультатом Изюмова-Курмаева [2] в теории функционала плотности, в том же пределе. 

Результаты диссертации, опубликованы в журналах ФТТ и ЖТФ в 2010 - 2014 г.. 

Материал диссертации докладывался: 

1) кафедра теоретической и математической физики НовГУ (г. Великий Новго-

род), апрель 2012 г. Зав. кафедрой - доктор физико-математических наук А.Ю. 

Захаров. 

2) кафедра теоретической физики и механики РУДН (г. Москва), март 2013 г., ап-

рель 2015 г. Зав. кафедрой - доктор физико-математических наук Ю.П. Рыбаков. 

3) Пятая Международная научная конференция «Химическая термодинамика и 

кинетика» (г. Великий Новгород), май 2015. 

4) кафедра теоретической физики МГУ (г. Москва), март 2017 г. Зав. кафедрой-

акад. A.A. Славиов. 

5) LUI Всероссийская конференция по проблемам динамики, физики частиц, фи-

зики плазмы и оптоэлектропики, РУДН (г. Москва), май 2017 г. 

6) кафедра теоретической и математической физики НовГУ (г. Великий Новго-

род), сентябрь 2017 г. Зав. кафедрой - доктор физико-математических наук 

А.Ю. Захаров. 

СТРУКТУРА И ОБЪЕМ ДИССЕРТАЦИИ 

Диссертация состоит из введения, двух разделов, относящихся к двум модельным 

случаям, заключения, математического приложения и списка литературы. 

В первом разделе диссертации аналитически точно вычисляются все термодина-

мические функции (ТФ) тела (с однородной потенциальной энергией), в рамках классиче-

ской статистики (см. ниже). Таким образом, модельность этого раздела состоит в том, что 



здесь рассматриваются лишь системы, потенциальная энергия которых есть однородная 

функция п-ой степени всех своих координат. 

Результаты этого раздела опубликованы в работе [Г]. 

Во втором разделе диссертации ТФ кристалла вычисляются аналитически точно 

(в рамках приближения «вложенного атома» ), то есть фактически путем введения дина-

мического среднего поля. Этот подход имеет достаточно широкое распространение в пе-

риодической физической литературе (и особенно за рубежом) при аналитических рас-

смотрениях свойств сильно коррелированных электронных систем (СКС). Такое прибли-

жение для исходного кристалла получают сведением гамильтониана Хаббарда 

Н = + (í/ / - - + (1) 

К так называемому однопримесному гамильтониану кристалла, путём сведения его двух-

узельной части к одноузельной, который, после этого, представляет собой гамильтониан 

лишь одного узла кристалла: 

= < с , . >+ < с% > Д)]+[{[/ / - Д ] - я; + Н] (2) 
(Т а а 

здесь 2 -число ближайших соседей узла ] ,а р- химический потенциал его электронов, 

буква 1 есть кинетическая энергия перескока электрона с узла / на ближайший его узел. 

Гамильтониан (2) как раз и определяет модельность системы, которая рассматривается 

во втором разделе диссертации. 

Результаты этого раздела опубликованы в работах [2'-3*]. 

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ 

Во Введении к первому разделу излагаются физические и математические мотивы 

аналитического рассмотрения каждой из двух глав первого раздела диссертации, а также 

фактически полученные результаты такого рассмотрения по каждой из этих глав. 

В первом разделе диссертации рассматривается точное (но содержащее неизвест-

ную функцию от одного сложного аргумента) выражение для свободной энергии класси-

ческого тела, которое получено в книге [4] на основе точной же его статистической сум-

мы. В книге [4] эта задача ставится так: «Потенциальная энергия взаимодействия частиц 

тела есть однородная функция п—го порядка от их координат. Воспользовавшись сооб-

ражениями подобия, определить, какой вид должна иметь свободная энергия такого те-

ла в классической статистике.». Ответ в книге [4] имеет вид: 
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Здесь неизвестной функцией является (р{к), от одного аргумента к: = (ГГ"""/Л'). В дис-

сертацин эта функция <р конкретизируется, то есть находится её точный явный вид пу-

тём совместного решения двух точных соотношений, взятых из той же книги [4]: 

-Р (4) - т (дР^ 
— 1 

т 

п 
п п 
2 п 

МТ^ЪаМ (5) 

где выражение (5) есть теорема вириала (ТВ) для рассматриваемой потенциальной энер-

гии (см. стр.112 в книге [4]), степени п её однородности. 

Уравнения (4)-(5) в книге [4] (да и вообще, в какой-либо физической литерату-

ре-книжной или периодической, нашей или зарубежной) совместно не нснользуются, 

например, для конкретизации функции (р в выражении (3), или каких-либо иных целей, 

поскольку нигде не фигурируют совместные решения уравнений (4)-(5). Но как раз совме-

стное решение уравнений (4)-(5) и позволяет выразить точный явный вид функции <р{х) 

через некоторую функцию f^{x), которая находится из решения системы (4)-(5): 

<р(х) = \а-(х„1п)/,(х„)]-[ /,(хУ1х (6) 

Здесь аргумент функции р(х), и известной функции (х), имеет вид: х = / / "". 

Реальный потенциал взаимодействия, например, атомов, как целых единиц, в твёр-

дом теле, разумеется, не известен, поэтому фактические аналитические расчёты часто на-

чинаются с использования неоднородных затравочных потенциалов, но тогда точное вы-

ражение (3) невозможно использовать, поскольку оно получено для однородного потен-

циала. Широко используемый неоднородный затравочный потенциал обычно является 

смесью функций разного порядка (степени) однородности, и простейшим примером тако-

го потенциала является центральный потенциал Леннарда-Джонса: 

[/(/•) = Л / / - " - В / / (7) 

где А и В>0. Поэтому, чтобы иметь возможность использовать точную формулу (3), в 

диссертации предлагается воспользоваться неким «обобщением» ТВ (5) на случай слож-

ных центральных потенциалов типа: 

= = Е д ; Л ^ О (8) 

Такое «обобщение» теоремы вириала на случай потенциала (6), выполнено в работе [5]: 



=[3(у-1)-1„п]£„„(К,Г) + £(Т,Г)Х„« (9) 

Здесь стоит отметить, что выражение (9) является точным , поскольку оно получено в ра-

боте [5] только путём тождественных преобразований исходного точного выражения. 

Этой «теоремы» вириала вполне достаточно, чтобы иметь возможность замкнуть соотно-

шение (4) и получить два замкнутых уравнения для энергии и давления. Именно для этого 

и использовалась «теорема» вириала (9) в работах [2* ] и [3* ]. Поскольку, однако, вели-

чина ^ ^ п не является собственным значением оператора Эйлера (гЭ/5г) для усреднён-

ной потенциальной функции , фигурирующей в (9), то её невозможно прямо 

использовать в выражении (З)-её , так сказать, «порядок однородности» нужно за-

ново определить, решив уравнение Эйлера на собственные функции и собственные значе-

— ; 

\Тг] 
~ л 

1 1 „ " ] 
(10) 

где Л теперь уже правильное собственное значение, и потому пригодное для использова-

ния в формуле (3). Однако, Л оказалось, при этом, зависящим от г , и поэтому его нужно 

также, по-видимому, усреднять, если пользоваться им в фактических расчётах. Но для 

методических целей аналитически точное выражение (9) вполне можно иепользовать, по-

скольку оно позволяет замкнуть основное термодинамическое соотнощеиие (4) и полу-

чить, тем самым, замкнутые уравнения для давления и энергии рассматриваемого тела, в 

которых будет фигурировать этот «порядок» однородности ^ ^ и . 

Во второй главе первого раздела диссертации как раз и показано, что даже такой 

«порядок» однородности ^ „ и приводит к вполне разумному расположению изотерм 

урана при достаточно больших сжатиях ((Г,, / К) > 2), и практически при любых темпера-

турах, хотя при малых сжатиях они выглядят довольно плохо (см. рис. 1): 
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Рисунок 1. Изотермы урана 

Далее, стоит привести фактические графики потенциалов Леннарда-Джонса иЦг) 

и его усреднённого вида (У, =< (/, > по схеме < (/ ]/ ^ у ? (см. рис. 2): 

I I 
; (/.(х) =<(7,(л-)>=-

2х") 

Рисунок 2. Безразмерный и усредненный потенциалы Леннарда-Джонса. 

Из этих графиков видно, что в области равновесного состояния рассматриваемой 

системы имеются значительные отклонения исходного потенциала (У, от усредненного 

потенциала и^ по формально-математически точной схеме (хотя точка минимума оста-

лась на прежнем месте, но слишком поднялась вверх, то есть энергия связи урана будет 

сильно занижена, по сравнению с энергией, получаемой по потенциалу Леннарда-

Джонса). Этим н объясняется та «растрепанность» изотерм урана, которая как раз и на-

блюдается при малых его сжатиях. 
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Во втором разделе диссертации рассматривается квантовостатистический метод 

построения динамического среднего поля (ВМРТ) для однопримесного гамильтониана 

решётки (2) [6]. Обычно эта задача оказывается очень сложной математически и столь же 

громоздкой технически. В диссертации используется одноузельный гамильтониан, полу-

ченный после усреднения [7 ] одночастичной чаети невырожденного гамильтониана Хаб-

барда (1), записанного для пз-зоны у - го атома металла (в одноатомном металле): 

= < С/, >+ < С% > + 

+ (И) 

ГУ 

здесь 2 - число ближайших соседей узла у , а р- химический потенциал электронов. Га-

мильтониан (И) описывает узел {любой) решётки, и имеет только четыре двухэлектрон-

ных состояния. 

Этот гамильтониан интересен тем, что он позволяет точно вычислить соответству-

ющие ему ФГв координатно-временном (либо же в координатно-частотном, и даже в ква-

зиимпульсно-частотном) представлении (в диссертации квазиимпульсно-частотное пред-

ставление не использовалось), и поэтому надобность в использовании, так называемого, 

действия [8] (операторного, и потому не очень ясного, с физической точки зрения)-ос-

новного вычислительного этана (наиболее сложного математически и наиболее громозд-

кого технически, как это признаётся и самими авторами, в весьма объёмном обзоре [8]) 

нахождения локальной ФГ (у локальных ФГ ->• 1(|ю„) в уравнении Дайсона), пол-

ностью отпадает, но сохраняется вся суть метода ОМРТ. Гамильтониан (И) позволяет 

точно вычислить и все средние типа < Я^ >,< >,< > ,< > , где 

< . . .>=<е' ' " ' . . .>! <е'''"' > , а также запаздывающую и опережающую мацубаровские 

ФГ, соответствующие этому гамильтониану. Вычисленные, с помощью гамильтониана 

(И), основные средние величины имеют вид: 

8р{е-'"' ')=[2 + е-'"'+е-''^"-'"]е'"'сК4л/3) (12") 

„ ( ( / -2 / / ) г -«" - ' " - / / - ( е - ' " ' + 1) ГТ , ГТ о - -< Яу >= ^̂  - ^ • '^^Р ; < >= (12') 

В случае нулевой температуры (Д -> оо) эти результаты приводят к антиферромагнетизму 
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для половинного заполнения «т-зоны. Вычисленные, с помощью гамильтониана (11), за-

паздывающая и опережающая одноэлектронные мацубаровские ФГ имеют вид: 

запаздывающая ФГ: 

G%-(a > 0) = + е-"'"-'"] + + 

-ь + ]} / Spe'^"' (13) 

опережающая ФГ: 

G'';'f(a < 0) = {Ajyie'"' + 

+ + /Spe'""' (14) 

Ввиду громоздкости этих выражений, здесь приводятся фурье-образы по «време-

ни» Г только дважды нулевых (то есть при Я^ = О • м • Г = О) ФГ: 

так как lim G[,(o!) = --!-ехр[-а(Я - р)], то её фурье-преобразование по а есть: 
я; ,Г—>0 2 

Х" 1 1 
О Л ' Ч ) = - - [ й ' г - • ехр( /«„г ) -ехр[ -а (Я- /0 ] = - (15) 

далее, так как lim G°(a) = ^ sxp{ap), то её фурье-преобразование по а есть: 
Hj 2 

1 " 1 1 
Со('Ч) = - f dT-exp(io}„T)-txp{ap) = --', (16) 

2 j> 2 leo^+p 

При получении этих выражений учтено, что а = г, - Tj > О для С Д а ) , и а < О для G^{a). 

Поведение фурье-образов ФГ в комплексной плоскости z очень важны, в частно-

сти, и этих G,)(i<a„) ,С°((й)„) на её мнимой оси !«„ необходимы для установления их элек-

тронных энергетических спектральных плотностей. Из (15) и (16) получается выражение: 

tco^-U + p <о}„+р 

Уходя с мнимой оси /w„ в комплексную плоскость Z (нужная область z фактически 

расположена в узкой полоске, охватывающей лишь действительную ось ю, так как она 

соответствует случаю Д со), то есть приближаясь к действительной оси т сверху и 

снизу от неё, одновременно имея в виду аналитические свойства запаздывающей (она оп-

ределена только в верхней полуплоскости z, но может быть аналитически продолжена и в 
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нижнюю полуплоскость z), то же имеет место и для опережающей ФГ (которая определе-

на только в нижней полуплоскости z), предыдущее выражение следует переписать так: 

1 /2 1 /2 (18) 
о}-и + р + 18 т + р-15 

то есть так будут определены эти ФГ непосредственно на действительной оси а [9]. 

Для случая половинного заполнения зоны (п = 1, и тогда р = 1] ¡1 в силу симмет-

рии частица-дырка) это выражение, на оси а , примет вид: 

' со-ип т + и и оГ-р" ^ 

то тесть фактически это выражение даёт правильную спектральную плотность электрон-

ных энергетических состояний уединенного атома. 

В этом же, втором, разделе диссертации развита теория возмущений для однопри-

месного гамильтониана, позволяющая точно вычислить термодинамические (мацубаров-

ские) запаздывающую и опережающую ФГ этой задачи [10]. Это стало возможным благо-

даря тому, что, во-первых, у выделенного узла имеется всего четыре двухэлектронных 

состояния, и, во-вторых, точной линеаризации (по возмущению) экспоненты от возму-

щающей части Я^ однопримесного гамильтониана Я^ = НУ + Я " : 

ехр(±ДЯ;) = ск(4лр) ± • НУ, где /I ^ а,о, + ар, (20) 

путём удачной перестройки бесконечных рядов. 

Этот весьма важный точный аналитический результат, являясь здесь, по существу, 

промежуточным, вполне может иметь и самостоятельное значение. 

Используя операторное определение для ФГ ((«„) (см., например, [11]): 

(10)„-Н^ (/«„) = 1 (21) 

полноту I = Г и ортонормированность Ци,) = ¿[^ двухэлектронных состоя-

ний |и,) узла, можно получить выражение 

I ('•«„ - я ^ . ('®„)|«Л = ( " г = 

пригодное для использования обычной теории возмущений по возмущающей части НУ 

полного гамильтониана узла Я^: 

ч - я ; т г \ щ . ) - ( Ч ) | и . ) = 

или 
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Это уравнение позволяет систематически и последовательно строить нужные поправки по 

возмущению Щ. Если возмущения нет (Н'. =0), то невозмущённая ( ^ нулевая) ФГ есть 

1(к0„-Е, = 

Малые добавки (пт'г) относятся к опережающей ФГ (-/£•) и запаздывающей ФГ (+/£•). 

Требуемое разложение недиагонального матричного элемента 

исходной ФГ по возмущению Щ имеет вид: 

(23) 

= Ы Н ' \ щ ) 0 - Г а с о „ ) (24) 

+ Ы (25) 

Теперь удобно ввеети, следуя Дайсону [12], определение некоторой новой функции 

~ называемой собственно-энергетической части ФГ, и её разложение: 

Тогда диагональные части ФГ (24), (25) и (26) можно будет представить в виде выражения 

1 1 

[(¡со,, - Е^ щ/я) - (ио„)] (ко,, - Е^ ш/г) 
(¡й>„ - Е^ ш/е) 

(27) 

известного в литературе как уравнение Дайсона [12]. Уравнение Дайсона (27) даёт значи-

тельные вычислительные преимущества, поскольку, если функцию вычислить 

даже лишь в первом порядке по Н^, и подставить полученное при этом выражение для 

собственно-энергетической части ^¡^(¡(0„) «(м^. [м^) в уравнение (27), то можно будет 

увидеть, что это будет означать выполнение суммирования некоторых членов разложения 

для ФГво всех порядках по Щ (так как выражение в [...] в (27) есть сумма бесконечно 

убывающей геометрической прогрессии со знаменателем, < 1) На языке диаграммной тех-

ники это означает выполнение суммирования некоторой бесконечной подпоследователь-

ности диаграмм. В этом как раз и состоит практическая польза использования в вычисле-

ниях уравнения Дайсона. В рассматриваемом случае однопримееной задачи, как показано 
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в диссертации, эта собственно-энергетическая часть вычисляется точно, а потому 

и ФГ уже вычисляется точно с помощью уравнения Дайсона. 

Точное рещение задачи получения ФГ однопримесной задачи для модели Хаббарда 

при экзотическом усреднении её одночастичной части можно получить и по теории воз-

мущений. Это связано с наличием только четырёх состояний щ рассматриваемого узла 

решётки, где А: = 1,2,3,4. На языке теории возмущений это означает, что, обычно беско-

нечный ряд (26), в данном случае оборвётся, сам собой, уже на члене четвёртого порядка 

по Н], поскольку имеется только три промежуточных состояния. 

Эта задача полностью, и в явном виде, решена в диссертации, чем и оправдывается смысл 

третьей главы второго раздела диссертации для случая однопримесной задачи. 

ЗАКЛЮЧЕНИЕ 

Работая над диссертацией, обьино сталкиваешься с разными проблемами, главные 

среди них, по-видимому, следующие две: 

1) в термодинамике-это точная термодинамическая связь 

Т(дР1дТ)у=(,5Е1дУ\+Р{У,Т) между внутренней энергией £(Г,Г) тела и его дав-

лением Р{У,Т). Здесь одно уравнение связывает две основные термодинамические 

функции, и проблема состоит в том, чтобы дополнить его ещё одним уравнением, свя-

зывающим те же неизвестные функции. В термодинамике нет ещё одного уравнения 

связи между энергией и давлением. Однако, в статистической физике имеется ТВ, свя-

зывающая энергию, давление и объём тела, и казалось бы, что проблема решена. Фак-

тически это не так, поскольку ТВ существует лишь в одном частном случае - если по-

тенциальная энергия изучаемой системы есть однородная функцня координат своих 

частиц, так как только в этом случае можно будет использовать теорему Эйлера для 

однородных функций: 

где ц -есть степень однородности функции /(х„...,хд,) по каждой из своих координат 

х,. В физических задачах роль функции часто играет потенциальная энер-

гия Г(Г|,...,Гд,) изучаемой системы, которая обычно берётся в двухчастичном прибли-

жении з г ) для любых двух частиц системы, и поскольку тогда функция 

Г(г,,г2,...,гд,) будет однородной, то теорема Эйлера примет свой простейший вид: 

гди{г)/Вг = пи{г). 
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На практике таких однородных функций нет (исключая, разумеется, ньютоновский, 

кулоновский, ещё потенциал малых колебаний), поэтому она, чаще всего, берётся в 

виде суммы двух функций разной степени однородности U^r) = U¡(r) + U^(r), напри-

мер, такой вид имеет широко используемый потенциал Леннарда-Джонса. Но к таким 

функциям не применима теорема Эйлера. 

Таким образом, в общем случае неоднородных функций замыкание основной термоди-

намической связи, по-видимому, невозможно. Для решения этой проблемы остаются 

два пути: либо найти еще одно уравнение, в котором не фигурировала бы степень од-

нородности, либо найти строгое обобщение ТВ на случай неоднородных потенциаль-

ных функций, что, на данном этане, представляет собой довольно сложную задачу. 

2) что касается метода «вложенного атома», с экзотическим усреднением невырожденно-

го однозонного гамильтониана Хаббарда, то этот путь может, по-видимому, оказать-ся 

более успешным в аналитических расчетах термодинамических и квантовоме-

ханических параметров кристаллов, поскольку на этой модели все расчеты можно 

проводить аналитически точно. Поэтому этот метод можно использовать и для иссле-

дования фазовых переходов, например, тина металл-изолятор. Он может также дать 

значительную экономию при расчётах не только ni-зон (4 состояния у вложенного 

атома), но и ир-зон (6 одноэлектронных состояния), и даже nd- и «/-зон (10 и 14 таких 

состояний соответственно). Другими методами аналитическое изучение этих случаев 

было бы крайне сложно, н даже фактически невозможно. 
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