Рассматривается задача построения n-линейных (n 2) плоских векторных полей с изолированной особой точкой и заданными сепаратрисами определенных типов. Такие построения основаны на использовании векторной алгебры, качественной теории динамических систем второго порядка и классических методов исследования их особых точек. Эта задача по существу является обратной задачей качественной теории обыкновенных дифференциальных уравнений, и ее решение может быть использовано для синтеза математических моделей управляемых динамических систем различной физической природы.
The problem of constructing n-linear (n 2) plane vector elds with isolated critical point and given separatrices of prescribed types is considered. Such constructions are based on the use of vector algebra, the qualitative theory of second-order dynamic systems and classical methods for investigating their critical points. This problem is essentially an inverse problem of the qualitative theory of ordinary di erential equations, and its solution can be used to synthesize mathematical models of controlled dynamical systems of various physical nature.