Об одной модификации метода Хемминга суммирования дискретных рядов Фурье и её применение для решения задачи коррекции термографических изображений

В работе рассматриваются математические методы коррекции термографических изображений (термограмм), полученных с помощью тепловизора, в виде распределения температуры на поверхности исследуемого объекта. Термограмма воспроизводит изображение тепловыделяющих структур, расположенных внутри исследуемого объекта. Это изображение передаётся с искажениями, так как источники, как правило, удалены от его поверхности и распределение температуры на поверхности объекта передаёт изображение как размытое за счёт процессов теплопроводности и теплопереноса. В работе в качестве принципа коррекции рассматривается продолжение функции температуры как гармонической функции с поверхности вглубь исследуемого объекта с целью получения функции распределения температуры вблизи источников. Такое распределение рассматривается как скорректированная термограмма. Продолжение функции температуры осуществляется на основе решения задачи Коши для уравнения Лапласа — некорректно поставленной задачи. Построение решения проводится с использованием метода регуляризации Тихонова. Основная часть построенного приближённого решения представлена в виде ряда Фурье по собственным функциям оператора Лапласа. Дискретизация задачи приводит к дискретным рядам Фурье. Для суммирования рядов Фурье и вычисления коэффициентов в работе предложена модификация метода Хемминга.

On a modification of the Hamming method for summing discrete Fourier series and its application to solve the problem of correction of thermographic images

The paper considers mathematical methods of correction of thermographic images (thermograms) in the form of temperature distribution on the surface of the object under study, obtained using a thermal imager. The thermogram reproduces the image of the heat-generating structures located inside the object under study. This image is transmitted with distortions, since the sources are usually removed from its surface and the temperature distribution on the surface of the object transmits the image as blurred due to the processes of thermal conductivity and heat exchange. In this paper, the continuation of the temperature function as a harmonic function from the surface deep into the object under study in order to obtain a temperature distribution function near sources is considered as a correction principle. This distribution is considered as an adjusted thermogram. The continuation is carried out on the basis of solving the Cauchy problem for the Laplace equation — an ill-posed problem. The solution is constructed using the Tikhonov regularization method. The main part of the constructed approximate solution is presented as a Fourier series by the eigenfunctions of the Laplace operator. Discretization of the problem leads to discrete Fourier series. A modification of the Hamming method for summing Fourier series and calculating their coefficients is proposed.

Authors
Publisher
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Number of issue
4
Language
English
Pages
342-356
Status
Published
Volume
30
Year
2022
Organizations
  • 1 Peoples’ Friendship University of Russia
Keywords
термограмма; некорректная задача; задача Коши для уравнения Лапласа; метод регуляризации Тихонова; дискретный ряд Фурье; thermogram; ill-posed problem; Cauchy problem for the Laplace equation; Tikhonov regularization method; discrete Fourier series
Date of creation
07.07.2023
Date of change
10.07.2023
Short link
https://repository.rudn.ru/en/records/article/record/93605/
Share

Other records

Kroytor Oleg K., Malykh Mikhail D.
Discrete and Continuous Models and Applied Computational Science. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 30. 2022. P. 330-341
Lovetskiy Konstantin P., Sevastianov Anton L., Zorin Alexander V.
Discrete and Continuous Models and Applied Computational Science. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 30. 2022. P. 357-363