Пятая Международная конференция по стохастическим методам (МКСМ-5).
Российский университет дружбы народов (РУДН).
2020.
P. 368-372
In this paper Sturm-Liouville problem is formulated with boundary conditions on the positive halfline [0 , +∞) for the 2 m -order truncated relativistic finite-difference Schrodinger equation (Logunov - Tavkhelidze - Kadyshevsky equation, LTKT equation) with a random quasipotential and a small parameter. The numerical analysis of eigenfunctions and eigenvalues for this boundary value problem with the random quantum anharmonic oscillator quasipotential is made. We used modifications of the layer-adapted piecewise uniform Shishkin-type meshes for numerical solving this problem with a small parameter. The behavior of eigenfunctions and eigenvalues are considered when a small parameter