Numerical Analisys of Relativistic Finite-difference Schrodinger Equation with Random Quasipotential and Small Parameter

In this paper Sturm-Liouville problem is formulated with boundary conditions on the positive halfline [0 , +∞) for the 2 m -order truncated relativistic finite-difference Schrodinger equation (Logunov - Tavkhelidze - Kadyshevsky equation, LTKT equation) with a random quasipotential and a small parameter. The numerical analysis of eigenfunctions and eigenvalues for this boundary value problem with the random quantum anharmonic oscillator quasipotential is made. We used modifications of the layer-adapted piecewise uniform Shishkin-type meshes for numerical solving this problem with a small parameter. The behavior of eigenfunctions and eigenvalues are considered when a small parameter

Publisher
Российский университет дружбы народов (РУДН)
Language
English
Pages
378-383
Status
Published
Year
2020
Organizations
  • 1 Peoples' Friendship University of Russia (RUDN University)
Keywords
stochastic process; Random quasipotential; Relativistic finite-difference Schrodinger equation; Layer-adapted piecewise uniform Shishkin-type meshes methods; small parameter
Date of creation
06.07.2022
Date of change
06.07.2022
Short link
https://repository.rudn.ru/en/records/article/record/89105/
Share

Other records

Shchetinin E.Y., Sevastianov L.A., Kulyabov D.S., Demidova A.V.
Пятая Международная конференция по стохастическим методам (МКСМ-5). Российский университет дружбы народов (РУДН). 2020. P. 368-372