A multidimensional superposition principle: numerical simulation and analysis of soliton invariant manifolds I

In the framework of a multidimensional superposition principle involving an analytical approach to nonlinear PDEs, a numerical technique for the analysis of soliton invariant manifolds is developed. This experimental methodology is based on the use of computer simulation data of soliton-perturbation interactions in a system under investigation, and it allows the determination of the dimensionality of similar manifolds and partially (in the small amplitude perturbation limit) to restore the related superposition formulae. Its application for cases of infinite dimensionality,and the question of approximation by lower dimensional manifolds and, respectively, by superposition formulae of a lower order are considered as well. The ideas and implementation details are illustrated and verified by using examples with the integrable, MKdV and KdV equations, and also nonintegrable, Kawahara and Regularized Long Waves equation, soliton models.

Authors
Publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
Number of issue
2
Language
English
Pages
188-229
Status
Published
Volume
14
Year
2007
Date of creation
19.10.2018
Date of change
19.10.2018
Short link
https://repository.rudn.ru/en/records/article/record/8779/
Share

Other records

Voskressensky L.G., Borisova T.N., Kulikova L.N., Dolgova E.G., Kleimenov A.I., Sorokina E.A., Titov A.A., Varlamov A.V.
Chemistry of Heterocyclic Compounds / KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII. Латвийский институт органического синтеза Латвийской академии наук. 2007. P. 703-715
Volkov S.V., Kutyakov S.V., Levov A.N., Polyakova E.I., Anh L.T., Soldatova S.A., Terentiev P.B., Soldatenkov A.T.
Chemistry of Heterocyclic Compounds / KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII. Латвийский институт органического синтеза Латвийской академии наук. 2007. P. 544-554