Рассматривается задача об успокоении нестационарной системы управления, описываемой системой дифференциально-разностных уравнений нейтрального типа с гладкими матричными коэффициентами и несколькими запаздываниями. Эта задача эквивалентна краевой задаче для системы дифференциально-разностных уравнений второго порядка, которая имеет единственное обобщенное решение. Доказано, что гладкость этого решения может нарушаться на рассматриваемом интервале и сохраняется лишь на некоторых подынтервалах. Получены достаточные условия на начальную функцию, обеспечивающие гладкость обобщенного решения на всем интервале.
We consider the damping problem for a nonstationary control system described by a system of differential-difference equations of neutral type with smooth matrix coefficients and several delays. This problem is equivalent to the boundary-value problem for a system of second-order differential-difference equations, which has a unique generalized solution. It is proved that the smoothness of this solution can be violated on the considered interval and is preserved only on some subintervals. Sufficient conditions for the initial function are obtained to ensure the smoothness of the generalized solution over the entire interval.