ON TRANSFER LEARNING METHODS IN BIOMEDICAL IMAGES CLASSIFICATION TASKS [О МЕТОДАХ ПЕРЕНОСА ГЛУБОКОГО ОБУЧЕНИЯ В ЗАДАЧАХ КЛАССИФИКАЦИИ БИОМЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ]

Computer studies of the effectiveness of deep transfer learning methods for solving the problem of human brain tumors recognition based on magtetic resonance imaging (MRI) are carried out. Various strategies of transfer learning and fine-tuning of the models are proposed and implemented. Deep convolutional networks VGG-16, ResNet-50, Xception, and MobileNetV2 were used as the baseline models, pre-trained on ImageNet. Also, a deep convolutional neural network 2D CNN was built and trained from scratch. Computer analysis of their performance metrics showed that when using the strategy of fine-tuning models on augmented MRI-scans data set, Xception model demonstrated higher accuracy values compared to other deep learning models. For Xception model, the accuracy of classification of MRI-scans with brain tumors was 96%, precision 99.43%, recall 96.03%, f1-score 97.7%, and AUC 98.92%. © 2021 Federal Research Center "Computer Science and Control" of Russian Academy of Sciences. All rights reserved.

Authors
Shchetinin E.Yu.1 , Sevastianov L.A. 2, 3
Publisher
Федеральный исследовательский центр "Информатика и управление" РАН
Number of issue
4
Language
Russian
Pages
59-64
Status
Published
Volume
15
Year
2021
Organizations
  • 1 Financial University, Government of the Russian Federation, 49 Leningradsky Prospekt, Moscow, 125993, Russian Federation
  • 2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation
  • 3 Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Moscow Region, Dubna, 141980, Russian Federation
Keywords
Brain tumor; Convolutional neural networks; Deep learning transfer; MRI scans
Share

Other records

Sobornov K.O., Korotkov I.P., Yakovlev D.V., Kulikov V.A., Kudriavtsev K.Yu., Kolecnik V.F.
Геология нефти и газа. Всероссийский научно-исследовательский геологический нефтяной институт, Министерство природных ресурсов и экологии РФ, Федеральное агентство по недропользованию, ОАО "Газпром". Vol. 2021. 2021. P. 73-88