Extension of the Tricomi problem for a loaded parabolic–hyperbolic equation with a characteristic line of change of type

In this work, we investigate a generalization of the Tricomi problem for a loaded mixed-type equation with the Riemann–Liouville fractional differential operator. By using the method of integral equations, a unique solvability of the formulated problem given in piecewise non-parallel characteristics is proven. © 2022 John Wiley & Sons, Ltd.

Authors
Baltaeva U.1, 2 , Agarwal P. 3, 4, 5 , Momani S.4, 6
Publisher
John Wiley and Sons Ltd
Language
English
Status
Published
Year
2022
Organizations
  • 1 Khorezm Mamun Academy, Khiva, Uzbekistan
  • 2 Department of Applied Mathematics, Urgench State University, Urgench, Uzbekistan
  • 3 Applied Non-Liner Science Lab, Department of Mathematics, Anand International College of Engineering, Jaipur, India
  • 4 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, United Arab Emirates
  • 5 Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 6 Department of Mathematics, The University of Jordan, Amman, Jordan
Keywords
boundary value problems; equations of mixed type; gluing conditions; integral equation; Riemann–Liouville fractional derivative
Share

Other records

Balykova L.A., Zaslavskaya K.Ya., Pavelkina V.F., Pyataev N.A., Selezneva N.M., Kirichenko N.V., Ivanova A.Yu., Rodoman G.V., Kolontarev K.B., Skrupsky K.S., Simakina E.N., Mubarakshina O.A., Taganov A.V., Pushkar D.Yu.
Фармация и фармакология. Пятигорский медико-фармацевтический институт - филиал федерального бюджетного образовательного учреждения высшего образования "Волгоградский государственный медицинский университет" Министерства здравоохранения Российской Федерации. Vol. 10. 2022. P. 113-126
Belyaeva I.А., Namazova-Baranova L.S., Baranov A.A., Efendieva K.Y., Karkashadze G.A., Dedyukina E.S., Serebryakova E.N., Konstantinidi T.A., Gogberashvili T.Yu., Molodchenkov A.I.
Вопросы современной педиатрии. Vol. 21. 2022. P. 72-82