Deficiency indices and discreteness property of block Jacobi matrices and Dirac operators with point interactions

The first part of the paper concerns with infinite symmetric block Jacobi matrices J with p×p-matrix entries. We present new conditions for general block Jacobi matrices to be self-adjoint and have discrete spectrum. In the second part of the paper a special classes of block Jacobi matrices JX,α are investigated. Our approach here substantially relies on a close connection between Jacobi matrices JX,α from this class and symmetric 2p×2p Dirac operators DX,α with point interactions in L2((a,b);C2p) established in our previous papers. In particular, their deficiency indices are related by n±(DX,α)=n±(JX,α) and under a simple additional assumption they are discrete only simultaneously. For block Jacobi matrices of this class we present several conditions ensuring equality n±(JX,α)=k with any k≤p. It is worth mentioning that a connection between Dirac and Jacobi operators is employed here in both directions for the first time. In particular, to prove the equality n±(JX,α)=p for JX,α it is first established for Dirac operator DX,α. We also find several conditions for matrix Schrödinger and Dirac operators with point interactions on finite or infinite intervals to have discrete spectrum. © 2021 Elsevier Inc.

Authors
Publisher
Academic Press Inc.
Number of issue
1
Language
English
Status
Published
Number
125582
Volume
506
Year
2022
Organizations
  • 1 Donetsk Academy of Management and Public Administration, Donetsk, Ukraine
  • 2 Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
Keywords
Deficiency indices; Discreteness; Jacobi matrix; Point interactions; Schrödinger and Dirac operators
Date of creation
06.07.2022
Date of change
06.07.2022
Short link
https://repository.rudn.ru/en/records/article/record/83918/
Share

Other records