В этой статье мы модифицируем результаты, полученные Митидиери и Похожаевым о достаточных условиях отсутствия нетривиальных слабых решений нелинейных неравенств и систем с целыми степенями оператора Лапласа и с нелинейным слагаемым вида a(x)|∇(Δmu)|q+ b(x)|∇u|s. Мы получаем оптимальные априорные оценки, применяя метод нелинейной емкости с соответствующим выбором пробных функций. В итоге мы доказываем отсутствие нетривиальных слабых решений нелинейных неравенств и систем от противного.
In this article, we modify the results obtained by Mitidieri and Pohozaev on sufficient conditions for the absence of nontrivial weak solutions to nonlinear inequalities and systems with integer powers of|the Laplace operator and with a nonlinear term of the form a(x)|∇(Δmu)|q+ b(x)|∇u|s. We obtainoptimal a priori estimates by applying the nonlinear capacity method with an appropriate choice of testfunctions. As a result, we prove the absence of nontrivial weak solutions to nonlinear inequalities and systems by contradiction.