Computers and Mathematics with Applications.
Elsevier Ltd.
Vol. 96.
2021.
P. 178-187
In this work, we study at the L2 – level global well-posedness as well as long-time stability of an initial-boundary value problem, posed on a bounded interval, for a generalized higher order nonlinear Schrödinger equation, modeling the propagation of pulses in optical fiber, with a localized damping term. In addition, we implement a precise and efficient code to study the energy decay of the higher order nonlinear Schrödinger equation and we prove its convergence and exponential stability of the discrete energy. © 2021 Elsevier Ltd