A spectral method for studying the stability of some classes of nonautonomous differential equations

The author proposes a method to investigate (without using Lyapunov functions) the stability of the trivial solution of differential systems of three types: (1) dot x=A(t,epsilon)x+f(x,t), x(0,epsilon)=x^0, where A(t,epsilon)=sum^infty_{k=0}A_k(t)epsilon^k, f(0,t)equiv 0, |A(t,epsilon)|leq C, tgeq 0, |epsilon|leqepsilon_0<1; (2) epsilondot x=A(t,epsilon)x+epsilon b(x,t), x(0,epsilon)=x^0, where the series A(t,epsilon)=sum^infty_{k=0}A_k(t)epsilon^k is absolutely and uniformly convergent for tgeq 0, |epsilon|leqepsilon_0; (3) dot x=A(t)x+f(x,t), x(t_0)=x^0, where A(t)=t^msum^infty_{k=0}A_k(t)t^{-k}, mgeq 1, f(0,t)equiv 0, tgeq t_0geq 1. (For all systems the A_k are sufficiently smooth T-periodic matrix functions.) par Conditions for stability, asymptotic stability and instability are obtained. Some examples are given to illustrate the proposed methods.

Authors
Konyaev Yu.A.
Editors
Mazanik Sergei
Publisher
Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"
Number of issue
no.~5
Language
English, Russian
Status
Published
Date of creation
19.05.2021
Date of change
19.05.2021
Short link
https://repository.rudn.ru/en/records/article/record/73834/
Share

Other records

Mukharlyamov R.G., Kokurin Mihail Yu.
Известия высших учебных заведений. Математика. Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет".