A generalization of the A. Vanderbauwhede variational principle

Let (X, Y,langle , ,rangle) be a dual pair of vector spaces and let B be a linear operator in X. We say that an operator Fcolon Xrightarrow Y is B-potential on an open set Msubset X with respect to a closed vector subspace X_0subset X if there exists a Gateaux-differentiable functional fcolon Mrightarrow bold R such that f'(x)h = langle F(x), Bh rangle for all xin M and hin X_0. The author presents conditions under which the operator F is B-potential and, consequently, solutions of the equation F(x)=0 correspond to critical points of f. Several special cases are discussed. The theorems presented generalize results of A. Vanderbauwhede and of I. Horová.

Authors
Filippov V.M.
Editors
Urbanski Paweł
Number of issue
no.~4
Language
English, Russian
Status
Published
Year
1994
Date of creation
19.05.2021
Date of change
19.05.2021
Short link
https://repository.rudn.ru/en/records/article/record/73758/
Share

Other records