On Almost Periodic Viscosity Solutions to Hamilton-Jacobi Equations

We establish that a viscosity solution to a multidimensional Hamilton-Jacobi equation with Bohr almost periodic initial data remains to be spatially almost periodic and the additive subgroup generated by its spectrum does not increase in time. In the case of one space variable and a non-degenerate hamiltonian we prove the decay property of almost periodic viscosity solutions when time t -> +infinity. For convex hamiltonian we also provide another proof of this property using the Hopf-Lax-Oleinik formula. For periodic solutions the more general result is proved on unconditional asymptotic convergence of a viscosity solution to a traveling wave.

Authors
Panov E.Y. 1, 2
Publisher
HELDERMANN VERLAG
Number of issue
2
Language
English
Pages
383-400
Status
Published
Volume
5
Year
2020
Organizations
  • 1 Novgorod State Univ, Algebra & Anal Dept, Veliky Novgorod 173003, Russia
  • 2 Peoples Friendship Univ, RUDN Univ, Moscow 117198, Russia
Keywords
Hamilton-Jacobi equations; viscosity solutions; almost periodic functions; long time behavior
Date of creation
20.04.2021
Date of change
20.04.2021
Short link
https://repository.rudn.ru/en/records/article/record/73158/
Share

Other records