Unique determination of a system by a part of the monodromy matrix

First-order ODE systems on a finite interval with nonsingular diagonal matrix B multiplying the derivative and integrable off-diagonal potential matrix Q are considered. It is proved that the matrix Q is uniquely determined by the monodromy matrix W(λ). In the case B = B*, the minimum number of matrix entries of W(λ) sufficient to uniquely determine Q is found.

Authors
Number of issue
4
Language
English
Pages
264-278
Status
Published
Volume
49
Year
2015
Organizations
  • 1 Российский университет дружбы народов
  • 2 Institute of Applied Mathematics and Mechanics, Donetsk
Date of creation
04.03.2021
Date of change
04.03.2021
Short link
https://repository.rudn.ru/en/records/article/record/71587/
Share

Other records

Маламуд М.М.
Записки научных семинаров Санкт-Петербургского отделения математического института им. В.А. Стеклова РАН. Учреждение Российской академии наук Санкт-Петербургское отделение Математического института им. В.А. Стеклова РАН. Vol. 270. 2000. P. 201-241