Работа посвящена применению оптимальных возмущений для управления математическими моделями инфекционных заболеваний, сформулированными в виде систем нелинейных дифференциальных уравнений с запаздывающим аргументом. Разработан алгоритм вычисления возмущений начального состояния динамической системы с запаздыванием, обладающих максимальной амплификацией в заданной локальной норме с учетом значимости компонент возмущения. Для модели экспериментальной вирусной инфекции построены оптимальные возмущения для двух типов стационарных состояний, с низким и высоким уровнем вирусной нагрузки, отвечающих различным вариантам течения хронической вирусной инфекции.
In this paper, we apply optimal perturbations to control mathematical models of infectious diseases expressed as systems of nonlinear differential equations with delayed argument. We develop the method for calculation of perturbations of the initial state of a dynamical system with delayed argument producing maximal amplification in the given local norm taking into account weights of perturbation components. For the model of experimental virus infection, we construct optimal perturbation for two types of stationary states, with low or high virus load, corresponding to different variants of chronic virus infection flow.