A continuous flow synthesis of menthol starting from citronellal catalysed by scrap catalytic converters is reported. The reaction was conducted in a tandem system connecting in series two catalytic systems, with the first having Lewis acid properties (favouring the cyclisation of citronellal to isopulegols) and the second having hydrogenation catalytic activity (catalysing the hydrogenation of isopulegols to menthols). A Lewis acid catalyst was prepared by supporting iron oxide nanoparticles over a waste material, i.e. the ceramic core of scrap catalytic converters (SCATs) via a microwave assisted method. Most importantly, SCATs, containing a low residual noble metal content, could be directly employed in the second step as hydrogenation catalysts. The reaction was performed studying the influence on the yield and selectivity to (-)-menthol of various reaction parameters (T, p and flow rate). Under the best reaction conditions (at a flow rate of 0.1 mL min-1 and at 373 K and 413 K for cyclisation and hydrogenation steps respectively) a conversion of >99% of (+)-citronellal to (-)-menthol with 77% final yield was achieved. © 2020 The Royal Society of Chemistry.