In this paper, we study complex dynamics of the interaction between natural convection and thermal explosion in porous media. This process is modeled with the nonlinear heat equation coupled with the nonstationary Darcy equation under the Boussinesq approximation for a fluid-saturated porous medium in a rectangular domain. Numerical simulations with the Radial Basis Functions Method (RBFM) reveal complex dynamics of solutions and transitions to chaos after a sequence of period doubling bifurcations. Several periodic windows alternate with chaotic regimes due to intermittence or crisis. After the last chaotic regime, a final periodic solution precedes transition to thermal explosion. © 2020 World Scientific Publishing Company.