A further restricting the gap between (N_z-τx) and (n-τx) on r.h. by using the sense of ω-numbers and ωp-numbers

In this article we use the sense of ω-numbers and ωp-numbers for restricting the gap between the error terms of Ω-results for 〖(N〗_z-τx) and the error terms of O-results for (N-τx) on Riemann Hypothesis (the Ω-results are generalized Ω-results for N_p as counting function of Beurling). The aim for this purpose we define: (Formula Presented)Here F(x) could be use for building a ω-numbers and ωp-numbers from a positive real number x for two aims. The first one used for showing some of the behaviors of the error term of the function N(x) while the second one is used for preparing a secure code for any security algorithm.

Authors
Hasan S.S. 1 , Al-Maamori F.2 , Majeed L.H.3
Publisher
Institute of Advanced Scientific Research, Inc.
Number of issue
5 Special Issue
Language
English
Pages
2043-2051
Status
Published
Volume
11
Year
2019
Organizations
  • 1 Department of Criminal Law|Criminal Procedure and Criminalistics|Peoples' Friendship|University of Russia
  • 2 University of Babylon|Department of Information Networks
  • 3 University of Baghdad|Department of Mathematics
Keywords
Abundant number; Beurling's prime system; deficient number; PA-number; ω-number; ωp-number
Share

Other records

Sozaeva L.T., Sherieva M.A., Shungarov I.K., Shagin S.I.
Наука. Инновации. Технологии. Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет". 2019. P. 185-192