Для решения жёстких задач Коши широко применяются алгоритмы автоматического выбора шага. Наиболее популярными являются пакеты Гира и Дормана-Принса. Эти методы хорошо зарекомендовали себя на мягких задачах, но на жёстких задачах могут давать сбои. Кроме того, они не дают гарантированной оценки погрешности. Известны примеры, когда фактическая погрешность на много порядков превышает заданную пользователем. В данной работе найдены новые примеры задач, в которых стандартные алгоритмы теряют надёжность.
Automatic step selection algorithms are widely used to solve stiff Cauchy problems. The Gear and Dormand-Prince packages are the most popular ones. These methods are well established being used in soft problems but they can malfunction in stiff ones. Moreover, they do not provide guaranteed error estimation. The cases are known where the real error exceeds the user defined one by many orders of magnitude. In that work the new problem examples are found in which standard algorithms lose robustness.