The aim of the investigation was to assess the efficacy of the 3D reconstruction of the alveolar bone by means of guided bone regeneration based on computer-assisted 3D planning using a resorbable dental membrane. Materials and Methods. 35 practically healthy patients without a marked concomitant somatic pathology with a diagnosis of “partial teeth loss complicated by alveolar bone atrophy” took part in the study. All patients underwent reconstructive operations to eliminate the defects and restore the alveolar bone volume using guided bone regeneration procedure and resorbable dental membranes. Planning and operations were performed according to the developed unified protocol including computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping. Results. The developed method of computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping has proved to be effective as it reduces the time of operative intervention, excludes the risk of forming a smaller membrane of inadequate shape, gives the required bone volume. Conclusion. The proposed method of computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping allows surgeons to improve the precision of the guided bone regeneration operations, to diminish the intraoperative time of membrane adaptation, and avoid the possibility of its mispositioning. At the same time, application of the resorbable dental membrane increases the efficacy of the 3D alveolar bone reconstruction. © 2017, Nizhny Novgorod State Medical Academy. All rights reserved.