В работе представлен обзор общетематических (неспециализированных) порождающих диалоговых моделей, основанных на глубоком обучении. Рассмотрены основные проблемы построения диалоговых моделей, основанных на машинном обучении, и методы их решения. На русскоязычном корпусе проведено экспериментальное сравнение классической нейросетевой диалоговой модели «кодировщик-декодировщик» с ее модификацией, использующей механизм внимания.
Building natural language dialogue systems that can converse coherently with user is an actual problem of artificial intelligence. This paper presents an overview of the open-domain generative neural network dialogue models. The main problems of constructing dialogue models based on machine learning and methods for their solution are considered. An experimental comparison of the vanilla neural network encoder-decoder model with its attention mechanism modification was carried out on the Russian-language data.