Умение вычислять интегралы от быстро осциллирующих функций является принципиально важным для решения многих задач оптики, электродинамики, квантовой механики, ядерной физики и многих других областях. В статье рассматривается метод приближенного вычисления интегралов от быстро осциллирующих функций с помощью перехода к численному решению системы обыкновенных дифференциальных уравнений. Использование чебышевской дифференциальной матрицы позволяет далее свести задачу к решению системы линейных алгебраических уравнений, чаще всего невырожденной. Однако и в случае плохой обусловленности системы линейных алгебраических уравнений применение метода тихоновской регуляризации позволяет с высокой точностью получать искомые значения интегралов.
The paper demonstrates approximate methods of integral calculation of highly oscillatory functions. The paper describes a quadrature method which adopts Chebyshev differential matrix to solve the ordinary differential equation (ODE) and thus obtain integral values. This method make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore, even if the system of linear equations is ill-conditioned, regularization method can be adopted to solve it properly and eventually obtain accurate integral results.