В статье исследуется возможность применения механизмов искусственных нейронных сетей и авторегрессионного анализа для построения прогнозирующих математических моделей загруженности канала пакетной передачи данных. Задача решена на примере временного ряда наблюдений интенсивностей на порту пограничного коммутатора. Приведён алгоритм построения авторегрессионной модели на основе статистического анализа временного ряда наблюдений. Приведён алгоритм построения нейросетевой модели на основе определения фрактальной размерности временного ряда. Построенные модели сравнены по расчётным значениям введённых критериев оценки точности прогноза.
In this article the possibility of application of artificial neural networks and autoregressive analysis to creating prediction models the channel with packet data transfer describes. The problem is solved using example time row measurement intensities on port edge switch. Algorithm of building autoregressive models based on statistical analysis of time row measurements. Algorithm of neural network model on the basis of the definition of fractal dimension of time rows was shown. Built models compared to current values entered criteria for evaluating the accuracy of the prediction.