В работе производится обобщение фреймовых систем. Первые шаги в описании систем такого типа принадлежат Т. П. Лукашенко. В 1997 г. он ввёл класс ортоподобных обобщённых систем, а в 2006 г. поставил вопрос о расширении фреймовых систем на обобщённые пространства. Этот вопрос и рассматривается в данной работе. Сначала в работе приводится описание на данный момент хорошо изученных дискретных и интегральных фреймов, а также описываются основные области практического применения таких фреймовых систем. Рассматриваются введённые Т. П. Лукашенко обобщённые системы, подобные ортогональным, и расширяются до обобщённых фреймов. Приводятся примеры, указывающие на то, что вводимый класс является более широким, чем рассматриваемые раньше дискретные и интегральные фреймы, и более общим, чем обобщённые ортоподобные системы (в качестве примеров приводятся преобразования Фурье и преобразования Гильберта). Вводится понятие обобщённых систем Рисса и исследуется связь фреймов и систем Рисса в обобщённом случае. Две доказываемые в работе теоремы устанавливают тесную связь между введёнными обобщёнными фреймами и обобщёнными системами Рисса и приводят необходимые и достаточные критерии для того, чтобы система являлась обобщённым фреймом. Выводится аналог равенства Парсеваля для обобщённых фреймовых систем.
In this paper a generalization of frame systems is made. First description of systems of this type was made by T. P. Lukashenko. In 1997 he introduced a class of generalized similar to orthogonal systems, and in 2006 proposed an idea to expand of frame-based systems on the generalized space. This question is considered in this paper. Firstly, the paper gives the description of well-studied, as for now, discrete and integral frames, as well as describes the main practical applications of such frame systems. The paper considers generalized systems, similar to orthogonal, introduced by T. P. Lukashenko, and these systems are extended to generalized frames. Given examples indicate that an input class is more inclusive than previously considered discrete and integral frames, and more general than the generalized orthogonal system (examples are Fourier transformation and the Hilbert transformation). The concept of generalized Riesz system is introduced and the relationship between frames and Riesz systems in a generalized way is studied. Two theorems are proved in the work to establish close links between the introduced generalized frames and generalized Riesz systems. The theorem give the necessary and sufficient criteria for the system to be a generalized frame. Parseval’s identity analog is deduced for generalized frame systems.