Russian Journal of Physical Chemistry A.
Vol. 89.
2015.
P. 2022-2031
We consider a lower bounded function on a complete metric space. For this function, we obtain conditions, including Caristi’s conditions, under which this function attains its infimum. These results are applied to the study of the existence of a coincidence point of two mappings acting from one metric space to another. We consider both single-valued and set-valued mappings one of which is a covering mapping and the other is Lipschitz continuous. Special attention is paid to the study of a degenerate case that includes, in particular, generalized contraction mappings. © 2015, Pleiades Publishing, Ltd.