Conformal spectral stability estimates for the Neumann Laplacian

We study the eigenvalue problem for the Neumann–Laplace operator in conformal regular planar domains Ω ⊂ C. Conformal regular domains support the Poincaré–Sobolev inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Authors
Burenkov V.I. 1, 2 , Gol'dshtein V.3 , Ukhlov A.3
Publisher
Wiley-VCH Verlag
Number of issue
17-18
Language
English
Pages
2133-2146
Status
Published
Volume
289
Year
2016
Organizations
  • 1 Peoples' Friendship University of Russia, 6 Mikluho-Maklay St., Moscow, Russian Federation
  • 2 Steklov Mathematical Institute, 8 Gubkin St., Moscow, Russian Federation
  • 3 Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
Keywords
conformal mappings; eigenvalue problem; elliptic equations; quasidiscs
Share

Other records