В статье показано применение жидкостных моделей к анализу потоков в инфокоммуникационных сетях. Модели, исследованные в статье, учитывают особенности получивших широкое распространение одноранговых Р2Р-сетей, использующихся для обмена файлами, параллельных вычислений, IP-телефонии, передачи потокового видео и др. В статье проведён обзор основных типов P2P-сетей и связанных с ними аналитических моделей. В построенных в статье жидкостных моделях сетевой трафик описывается в терминах изменения во времени скоростей потоков данных между пользователями и числа пользователей сети. Первая модель представляет собой систему обыкновенных дифференциальных уравнений и позволяет анализировать среднее время загрузки файла. Вторая модель в виде дифференциального уравнения в частных производных является расширением первой и учитывает случайный объем данных, запрашиваемых пользователями. Она может быть использована для анализа как устойчивого состояния системы при загрузке, так и неустановившегося состояния, и подходит для исследования поведения системы при большом числе пользователей. Помимо среднего времени загрузки файла вторая модель, учитывающая состав присутствующих в сети пользователей, позволяет анализировать такие показатели эффективности сети, как число личеров и сидов в сети.
The application of the fluid models to the analysis of the streams in information and communication networks is presented. The models, considered in the paper, take into account the specificities of widespread P2P networks (peer-to-peer), used for file-sharing, parallel computing, IP telephony, video streaming, etc. The review of the main types of P2P networks and their associated analytical models are presented in the paper. The fluid models, presented in the paper, describe network traffic in terms of the changes over time data stream rates between users and in terms of the number of network users. The first model is a system of ordinary differential equations and allows to analyze the average file download time. The second model is the extension of the first model and is represented in the form of partial differential equation. It takes into account a random amount of data requested by users. It can be used to analyze both the transient state and steady state during the download. This model is suitable to study the behavior of the system with a large number of users. In addition to the average download time the second model, taking into account the population in the network, allows to analyze such parameters of the network performance as the number of leechers and seeders in the network.