Certain aspects of applying Newton's method to the Navier-Stokes equations

New effective method for inverting the Fŕechet derivative of nonlinear mapping corresponding to the initial-boundary value problem for Navier-Stokes equations has been demonstrated. The basic difficulty in the practical use of Newton's method is associated with the inversion of the Fŕechet derivative. The method of inverting Fŕechet derivative can be applied not only to the Navier-Stokes equations but also to a wide class of quasilinear evolution problems with analytical nonlinearities. The initial approximation of Newton method can be preferred on any prescribed time interval (O,T) without dividing (O,T) into small subintervals, since the division procedure leads to error accumulation for sufficiently large T. The efficiency of the Vanhorn regularization is explained by the inheritance of the analytical dependence of solutions to the Navier-Stokes equations on the data of the problem.

Authors
Number of issue
3
Language
English
Pages
351-355
Status
Published
Volume
79
Year
2009
Organizations
  • 1 Peoples' Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
Keywords
Error accumulation; Evolution problem; Initial approximation; Initial-boundary value problems; Newton methods; Newton's methods; Non-Linearity; Nonlinear mappings; Practical use; Quasi-linear; Subintervals; Time interval; Control nonlinearities; Differential equations; Fluid dynamics; Newton-Raphson method; Nonlinear equations; Viscous flow; Navier Stokes equations
Date of creation
19.10.2018
Date of change
19.10.2018
Short link
https://repository.rudn.ru/en/records/article/record/2949/
Share

Other records

Soldatenkov A.T., Polyanskii K.B., Kolyadina N.M., Soldatova S.A.
Chemistry of Heterocyclic Compounds. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Vol. 45. 2009. P. 633-657