О чувствительности характеристик надежности систем к виду функций распределения времени безотказной работы и восстановлен

В статье рассматривается проблема чувствительности характеристик надёжности систем ‎‹M2/GI/1›‎ и ‎‹GI2/M/1› к виду функций распределения (ф.р.) времени безотказной работы (в.б.р.) и времени восстановления их элементов при ограничениях на доступность восстановления. Для этих систем представлены дифференциальные уравнения в частных производных для нестационарных и обыкновенные дифференциальные уравнения для стационарных вероятностей микросостояний состояний. Для стационарных вероятностей микро-и макросостояний и получены аналитические выражения их зависимости от вида распределений в.б.р. и времени восстановления, которые явно зависят от вида ф.р. не показательно распределённых исходных характеристик систем через их производящие функции (преобразования Лапласа-Стилтьеса соответствующих ф.р.) в точках, равных интенсивности показательно распределённой характеристики. С помощью специально разработанного программного средства в среде MATLAB проведено численное исследование чувствительности вероятности отказа системы от вида функций распределения времени безотказной работы и восстановления её элементов и сравнение полученных результатов с соответствующими характеристиками для простейшей марковской модели ‎‹M2/M/1›‎. Проведённое исследование показало, что эта чувствительность незначительна и становится исчезающе малой при «быстром» восстановлении. В частности, в результате численного анализа с помощью указанного программного средства показано, что когда в качестве общего распределения GI используются Гамма-распределение (Г) или распределение Вейбулла-Гнеденко (W − G), вероятности отказа систем ‎‹M2/GI/1›‎ и ‎‹GI2/M/1›‎ быстро сходятся к нулю с ростом скорости восстановления.

On Sensitivity of Systems Reliability Characteristics to the Shape of Their Elements Life and Repair Time Distributions

The paper deals with the problem of the systems ‎‹M2/GI/1›‎ and ‎‹GI2/M/1› reliability characteristics sensitivity to the shape of their elements life and repair times distributions under restrictions on the availability of recovery. Partial differential equation for the time dependent and usual differential equations for the stationary micro-state probabilities of these systems are proposed. Explicit expressions for the micro-and macro-state stationary probabilities of these systems are given and they show their strong dependability on the shape of their elements life and repair times distributions. This dependence represents in terms of moment generation functions non-exponential distribution in the point of the exponential distribution parameters. Special software tool based on the MATLAB computer system has been developed for the numerical analysis of the system failure probability sensitivity to the shape of its elements life and recovery distributions and its comparison with the simplest Markov system. The numerical analysis shows that this dependence becomes negligible and vanishes for “fast” recovery (with recovery rate increasing). In particular, it has been shown that the failure probabilities of the systems ‎‹M2/GI/1›‎ and ‹GI2/M/1› with Gamma and Weibull-Gnedenko distributions instead of the general ones quickly converge to zero with increasing recovery rate and coincide with the simplest Markov system ‹M2/M/1› for special value of the particular value of the parameter c =1.0.

Publisher
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Number of issue
3
Language
Russian
Pages
65-77
Status
Published
Year
2014
Organizations
  • 1 Peoples Friendship University of Russia
  • 2 Gubkin Russian State University of Oil and Gas
Keywords
надёжность систем; вероятности отказа; чувствительность к виду функций распределения; микро-и макросостояния; стационарные и не стационарные вероятности; reliability systems; failure probabilities; sensitivity to the shape elements life and recovery time distributions; micro- and macro-states; stationary and non-stationary probabilities
Share

Other records

Zaryadov I.S., Scherbanskaya A.A.
RUDN Journal of Mathematics, Information Sciences and Physics. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). 2014. P. 61-66
Gusev A.A., Chuluunbaatar O., Vinitsky S.I., Abrashkevich A.G.
RUDN Journal of Mathematics, Information Sciences and Physics. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). 2014. P. 336-341