Представлены новый геотехнологический подход и принципы построения альтернативной конвергентной геотехнологии освоения соляных месторождений, основанные на изменении направления движения фронта очистной выемки. Последнее предполагает переход от отработки полезного ископаемого горизонтальными камерами к вариантам восходящей или нисходящей их отработки вертикальными камерами цилиндрической формы. Описан вариант численного моделирования НДС МКЦ с отсекаемыми вертикальными камерами углами на глубине 600 м. Определено направление доработки методики аналитических расчетов параметров МКЦ для условий применения сотовых горных конструкций при различных вариантах исходного поля напряжений.
Geomechanical substantiation of stability of honeycomb structures created in mines by drilling vertical cylindrical stopes is a relevant and challenging problem. The authors present a new geotechnical approach and a concept of an alternative convergent mining technology for salt rock masses. The idea is to change the direction of the stoping front advance from the horizontal tunneling to the top-downward or bottomupward stoping in drilled vertical openings of cylindrical shape. The simplest way to find an alternative is making a decision which is converse to the adopted practice. The rib pillar stability is calculated using the Turner-Shevyakov hypothesis applied to the conventional room-and-pillar mining and to the vertical cylindrical stopes with rib pillars with cornerscut off by circles. The analytical procedure is developed to determine stability of structural components in the honeycomb mines, and the limitations for applying the Shevyakov method to the conventional and new mining systems are defined. The article describes a selected variant of the numerical stress-strain modeling in a rib pillar with its corners cut off by vertical cylindrical stopes arranged in a square pattern for the conditions of a honeycomb structure mine at a depth of 600 m. It is planned to adapt the procedure of the rib pillar design for mining using the honeycomb structures under different-type natural stresses: gravitational, lithostatic and gravitational-tectonic.