Numerical solution of first-order exact differential equations by the integrating factor method; [Численное решение дифференциальных уравнений первого порядка в полных дифференциалах методом интегрирующего множителя]

A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a "new" numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss - Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients. © 2024 Saratov State University. All rights reserved.

Authors
Sevastianov L.A. , Lovetskiy K.P. , Kulyabov D.S. , Sergeev S.V.
Publisher
Saratov National Research State University
Number of issue
4
Language
Russian
Pages
512-525
Status
Published
Volume
24
Year
2024
Organizations
  • 1 Peoples' Friendship University of Russia Named after Patrice Lumumba, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation
  • 2 Joint Institute for Nuclear Research, 6 Joliot-Curie St. Moscow region, Dubna, 141980, Russian Federation
Keywords
collocation; integrating factors; integration matrices; inverse problem; recovery of coefficients; spectral method

Other records

Butranova O.I., Zyryanov S.K., Abramova A.A.
Фармация и фармакология. Пятигорский медико-фармацевтический институт - филиал федерального бюджетного образовательного учреждения высшего образования "Волгоградский государственный медицинский университет" Министерства здравоохранения Российской Федерации. Vol. 12. 2024. P. 150-171