On some estimations of deviations between real solution and numerical solution of dynamical equations with regard for Baumgarte constraint stabilization; [Баумгарт байланысының тұрақтануын ескере отырып, динамикалық теңдеулердiң нақты және сандық шешiмi арасындағы ауытқулардың кейбiр бағалаулары туралы]; [О некоторых оценках отклонений между реальным и численным решениями динамических уравнений с учетом стабилизации связи Баумгарта]

The numerical solution of a system of differential equations with constraints can be unstable due to the accumulation of rounding errors during the implementation of the difference scheme of numerical integration. To limit the amount of accumulation, the Baumgarte constraint stabilization method is used. In order to estimate the deviation of real solution from the numerical one the method of constraint stabilization can be used to derive required formulas. The well-known technique of expansion the deviation function to Taylor series is being used. The paper considers the estimation of the error of the numerical solution obtained by the first-order Euler method. © 2024 The Authors.

Authors
Akylbayev M.I. , Kaspirovich I.E.
Publisher
KARAGANDA STATE UNIV
Number of issue
1
Language
English
Pages
21-27
Status
Published
Volume
113
Year
2024
Organizations
  • 1 Peoples’ Friendship University named after Academician A. Kuatbekov, 14 Tereshkova street, Shymkent, 160000, Kazakhstan
  • 2 Institute of Physical Research and Technologies, Patrice Lumumba Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation
Keywords
constraint stabilization; difference scheme; dynamics; numerical integration; numerical methods; numerical solution; rounding; stability; system of differential levels
Share

Other records

Ovsyannikov D.Yu., Boitsova E.V., Karpenko M.A., Zhestkova M.A., Makarenko E.V., Alexeeva O.V., Strelnikova V.A., Davydov I.S.
Неонатология: новости, мнения, обучение. Общество с ограниченной ответственностью Издательская группа ГЭОТАР-Медиа. Vol. 43. 2024. P. 37-46