Quantum and relativistic virial inequalities

The generalization of the virial theorem is discussed. The case where the potential energy is a sum of homogeneous functions of various degree is investigated. If the potential energy U is composed of a gravitational (or Coulomb) energy and an energy of the short-range repulsion of particles, then virial inequalities of the form 2-K + Ū < 0 are valid, where K is the kinetic energy. For classical systems of this type, but with a Hamiltonian relativistic in the momenta, the inequality 3Nθ < |Ū| holds, where N is the number of particles in the system, θ = kT, T is the temperature, and k is Boltzmann's constant. © 1979 Plenum Publishing Corporation.

Authors
Publisher
Kluwer Academic Publishers-Plenum Publishers
Number of issue
6
Language
English
Pages
632-635
Status
Published
Volume
22
Year
1979
Organizations
  • 1 Patrice Lumumba University, Russia
Share

Other records

Prostakov N.S., Anisimov B.N., Varlamov A.V., Zakharov V.F., Zakharov P.I., Dzhkha C.M., Murugova L.A.
Chemistry of Heterocyclic Compounds. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Vol. 15. 1979. P. 777-780
Prostakov N.S., Gaivoronskaya L.A., Anastasi R., Mohomon K.M.S., Savina A.A.
Chemistry of Heterocyclic Compounds. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Vol. 15. 1979. P. 647-651