Quantum and relativistic virial inequalities

The generalization of the virial theorem is discussed. The case where the potential energy is a sum of homogeneous functions of various degree is investigated. If the potential energy U is composed of a gravitational (or Coulomb) energy and an energy of the short-range repulsion of particles, then virial inequalities of the form 2-K + Ū < 0 are valid, where K is the kinetic energy. For classical systems of this type, but with a Hamiltonian relativistic in the momenta, the inequality 3Nθ < |Ū| holds, where N is the number of particles in the system, θ = kT, T is the temperature, and k is Boltzmann's constant. © 1979 Plenum Publishing Corporation.

Authors
Publisher
Kluwer Academic Publishers-Plenum Publishers
Number of issue
6
Language
English
Pages
632-635
Status
Published
Volume
22
Year
1979
Organizations
  • 1 Patrice Lumumba University, Russia
Date of creation
19.10.2018
Date of change
19.10.2018
Short link
https://repository.rudn.ru/en/records/article/record/1571/
Share

Other records

Prostakov N.S., Anisimov B.N., Varlamov A.V., Zakharov V.F., Zakharov P.I., Dzhkha C.M., Murugova L.A.
Chemistry of Heterocyclic Compounds. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Vol. 15. 1979. P. 777-780
Prostakov N.S., Gaivoronskaya L.A., Anastasi R., Mohomon K.M.S., Savina A.A.
Chemistry of Heterocyclic Compounds. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Vol. 15. 1979. P. 647-651