Arable soils are subjected to the altering influence of agricultural and natural processes determining surface feedback patterns therefore affecting their ability to reflect light. However, remote soil mapping and monitoring usually ignore information on surface state at the time of data acquisition. Conducted research demonstrates the contribution of surface feedback dynamics to soil reflectance and its relationship with soil properties. Analysis of variance showed that the destruction surface patterns accounts for 71% of spectral variation. The effect of surface smoothing on the relationships between soil reflectance and its properties varies. In the case of organic matter and medium and coarse sand particles, correlation decreases with the removement of surface structure. For particles of fine sand and coarse silt, grinding changes spectral areas of high correlation. Partial least squares regression models also demonstrated variations in complexity, R2cv and RMSEPcv. Field dynamics of surface feedback patterns of arable soils causes 22–46% of soil spectral variations depending on the growing season and soil type. The directions and areas of spectral changes seem to be soil-specific. Therefore, surface feedback patterns should be considered when modelling soil properties on the basis of optical remote sensing data to ensure reliable and reproducible results.