Text Categorization Methods Using Topical Importance Characteristic

This paper presents a study, which evaluates the quality of well-know classification algorithms using Topical Importance Characteristic as a weighting scheme for features. For purposes of research, we used the Twenty Newsgroups dataset. The result of classifiers' performance on different subsets shows that method based on TIC outperforms approaches based on TF-IDF.

Publisher
Voronezh State University
Language
English
Pages
488-489
Status
Published
Year
2017
Organizations
  • 1 Peoples Friendship University of Russia
Keywords
topical classification; random forest classifier; Twenty Newsgroups; Topical Importance Characteristic; Multinomial Naïve Bayes
Share

Other records

Gvozdikova E.N., Avanesov A.M.
Вестник Российского научного центра рентгенорадиологии Минздрава России. Федеральное государственное бюджетное учреждение "Российский научный центр рентгенорадиологии" Министерства здравоохранения Российской Федерации. Vol. 17. 2017. P. 1-1