Different implementations of Clifford algebra: spinors, quaternions, and geometric algebra, are used to describe physical and technical systems. The geometric algebra formalism is a relatively new approach, destined to be used primarily by engineers and applied researchers. In a number of works, the authors examined the implementation of the geometric algebra formalism for computer algebra systems. In this article, the authors extend elliptic geometric algebra to hyperbolic space-time algebra. The results are illustrated by different representations of Maxwell’s equations. Using a computer algebra system, Maxwell’s vacuum equations in the space-time algebra representation are converted to Maxwell’s equations in vector formalism. In addition to practical application, the authors would like to draw attention to the didactic significance of these studies.