Hermite Interpolation Polynomials on Parallelepipeds and FEM Applications

We implement in Maple and Mathematica an algorithm for constructing multivariate Hermitian interpolation polynomials (HIPs) inside a d-dimensional hypercube as a product of d pieces of one-dimensional HIPs of degree $$p'$$ in each variable, that are calculated analytically using the authors’ recurrence relations. The piecewise polynomial functions constructed from the HIPs have continuous derivatives and are used in implementations of the high-accuracy finite element method. The efficiency of our finite element schemes, algorithms and GCMFEM program implemented in Maple and Mathematica are demonstrated by solving reference boundary value problems (BVPs) for multidimensional harmonic and anharmonic oscillators used in the Geometric Collective Model (GCM) of atomic nuclei. The BVP for the GCM is reduced to the BVP for a system of ordinary differential equations, which is solved by the KANTBP 5 M program implemented in Maple.

Authors
Gusev A.A. 1, 2 , Chuluunbaatar Galmandakh 1, 3 , Chuluunbaatar Ochbadrakh1, 4 , Vinitsky S.I. 1, 3 , Blinkov Y.A. 3, 5 , Deveikis Algirdas6 , Hess P.O.7, 8 , Hai L.L. 9
Publisher
Birkhauser
Number of issue
3-4
Language
English
Pages
18
Status
Published
Volume
17
Year
2023
Organizations
  • 1 Joint Institute for Nuclear Research
  • 2 Dubna State University
  • 3 Peoples’ Friendship University of Russia (RUDN University)
  • 4 Mongolian Academy of Sciences
  • 5 Chernyshevsky Saratov National Research State University
  • 6 Vytautas Magnus University
  • 7 UNAM
  • 8 Frankfurt Institute for Advanced Studies
  • 9 Ho Chi Minh City University of Education
Keywords
Multivariate Hermite interpolation polynomials; Multidimensional harmonic and anharmonic oscillator; finite element method; Geometric collective model of atomic nuclei; mathematics; general; computer Science
Share

Other records

Пилипсон Ж.Ю., Ильин Д.О., Логвинов А.Н., Фролов А.В., Бессонов Д.А., Ачкасов Е.Е., Ольчев А.А., Королев А.В.
Вестник восстановительной медицины. Некоммерческое партнерство Объединение специалистов восстановительной медицины (диагностика, оздоровление, реабилитация). Vol. 22. 2023. P. 117-123