Averaging and mixing for stochastic perturbations of linear conservative systems

We study stochastic perturbations of linear systems of the form \begin{equation*} dv(t)+Av(t) dt=\varepsilon P(v(t)) dt+\sqrt{\varepsilon} \mathcal{B}(v(t)) dW (t), \qquad v\in\mathbb{R}^D, \tag{*} \end{equation*} where $A$ is a linear operator with non-zero imaginary spectrum. It is assumed that the vector field $P(v)$ and the matrix function $\mathcal{B}(v)$ are locally Lipschitz with at most polynomial growth at infinity, that the equation is well posed and a few of first moments of the norms of solutions $v(t)$ are bounded uniformly in $\varepsilon$. We use Khasminski's approach to stochastic averaging to show that, as $\varepsilon\to0$, a solution $v(t)$, written in the interaction representation in terms of the operator $A$, for $0\leqslant t\leqslantConst\cdot\varepsilon^{-1}$ converges in distribution to a solution of an effective equation. The latter is obtained from $(*)$ by means of certain averaging. Assuming that equation $(*)$ and/or the effective equation are mixing, we examine this convergence further.Bibliography: 27 titles.

Authors
Huang Guan 1, 2 , Kuksin S.B. 2, 3
Publisher
Федеральное государственное бюджетное учреждение науки Математический институт им. В.А. Стеклова Российской академии наук
Number of issue
4
Language
English
Pages
3-52
Status
Published
Volume
78
Year
2023
Organizations
  • 1 School of Physics, Beijing Institute of Technology
  • 2 Peoples Friendship University of Russia
  • 3 Université Paris VII - Denis Diderot, UFR de Mathématiques
Keywords
averaging; mixing; stationary measures; Effective equations; uniform in time convergence
Share

Other records

Мамедов С.К., Гусейнов Н.А., Мухаметшин Р.Ф., Лежава Н.Л., Лукьянова Е.А., Ямуркова Н.Ф.
Медицинский алфавит. Общество с ограниченной ответственностью Альфмед. 2023. P. 88-94