В работе исследуется эта-инвариант эллиптических краевых задач с параметром и его основные свойства. Используя подход Мельроуза, мы определяем эта-инвариант как регуляризацию числа вращения семейства. При этом регуляризация следа включает получение асимптотики следа композиций обратимых краевых задач с параметром при больших значениях параметра. Получение асимптотики использует аппарат псевдодифференциальных краевых задач и опирается на сведение краевых задач с параметром к краевым задачам без параметра.
In this paper, we study the eta-invariant of elliptic parameter-dependent boundary value problems and its main properties. Using Melrose’s approach, we de ne the eta-invariant as a regularization of the winding number of the family. In this case, the regularization of the trace requires obtaining the asymptotics of the trace of compositions of invertible parameter-dependent boundary value problems for large values of the parameter. Obtaining the asymptotics uses the apparatus of pseudodifferential boundary value problems and is based on the reduction of parameter-dependent boundary value problems to boundary value problems with no parameter.